Documentation Verification Report

Content

πŸ“ Source: Mathlib/RingTheory/Polynomial/Content.lean

Statistics

MetricCount
DefinitionsIsPrimitive, content, normalizedGcdMonoid, primPart
4
TheoremsisPrimitive, C_content_dvd, content_eq_one, dvd_primPart_iff_dvd, mul, ne_zero, primPart_eq, isPrimitive, aeval_primPart_eq_zero, content_C, content_C_mul, content_X, content_X_mul, content_X_pow, content_dvd_coeff, content_eq_gcd_leadingCoeff_content_eraseLead, content_eq_gcd_range_of_lt, content_eq_gcd_range_succ, content_eq_zero_iff, content_monomial, content_mul, content_mul_aux, content_one, content_primPart, content_zero, degree_gcd_le_left, degree_gcd_le_right, dvd_content_iff_C_dvd, dvd_iff_content_dvd_content_and_primPart_dvd_primPart, eq_C_content_mul_primPart, evalβ‚‚_primPart_eq_zero, exists_primitive_lcm_of_isPrimitive, gcd_content_eq_of_dvd_sub, isPrimitive_iff_content_eq_one, isPrimitive_iff_isUnit_of_C_dvd, isPrimitive_iff_ne_zero, isPrimitive_of_dvd, isPrimitive_one, isPrimitive_primPart, isUnit_primPart_C, natDegree_primPart, normUnit_content, normalize_content, primPart_dvd, primPart_mul, primPart_ne_zero, primPart_zero
47
Total51

Irreducible

Theorems

NameKindAssumesProvesValidatesDepends On
isPrimitive πŸ“–mathematicalIrreducible
Polynomial
CommSemiring.toSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.IsPrimitiveβ€”map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
MulZeroClass.zero_mul
Polynomial.isUnit_iff
Polynomial.natDegree_C_mul
Polynomial.natDegree_C
Polynomial.coeff_C_zero
IsUnit.map
MonoidWithZeroHomClass.toMonoidHomClass
isUnit_or_isUnit

Polynomial

Definitions

NameCategoryTheorems
IsPrimitive πŸ“–MathDef
12 mathmath: isPrimitive_iff_isUnit_of_C_dvd, Irreducible.isPrimitive, isPrimitive_iff_content_eq_one, isPrimitive_iff_contentIdeal_eq_top, isPrimitive_iff_ne_zero, isPrimitive_of_contentIdeal_eq_top, cyclotomic.isPrimitive, isPrimitive_primPart, isPrimitive_one, Monic.isPrimitive, isPrimitive_iff_forall_gaussNorm_eq_one, Submodule.IsPrincipal.isPrimitive_iff_contentIdeal_eq_top
content πŸ“–CompOp
27 mathmath: dvd_iff_content_dvd_content_and_primPart_dvd_primPart, content_eq_zero_iff, content_zero, content_eq_gcd_range_of_lt, normUnit_content, isPrimitive_iff_content_eq_one, IsPrimitive.content_eq_one, content_X_mul, gcd_content_eq_of_dvd_sub, content_C_mul, eq_C_content_mul_primPart, normalize_content, content_mul_aux, Submodule.IsPrincipal.contentIdeal_eq_span_content_of_isPrincipal, content_one, dvd_content_iff_C_dvd, content_X, content_dvd_coeff, content_primPart, content_mul, contentIdeal_le_span_content, content_C, content_eq_gcd_leadingCoeff_content_eraseLead, content_eq_gcd_range_succ, content_X_pow, C_content_dvd, content_monomial
normalizedGcdMonoid πŸ“–CompOp
6 mathmath: RatFunc.num_div, degree_gcd_le_left, RatFunc.numDenom_div, RatFunc.denom_div, RatFunc.num_div_dvd', degree_gcd_le_right
primPart πŸ“–CompOp
13 mathmath: primPart_zero, aeval_primPart_eq_zero, dvd_iff_content_dvd_content_and_primPart_dvd_primPart, eq_C_content_mul_primPart, natDegree_primPart, primPart_dvd, isPrimitive_primPart, IsPrimitive.dvd_primPart_iff_dvd, isUnit_primPart_C, IsPrimitive.primPart_eq, content_primPart, evalβ‚‚_primPart_eq_zero, primPart_mul

Theorems

NameKindAssumesProvesValidatesDepends On
C_content_dvd πŸ“–mathematicalβ€”Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
content
β€”dvd_content_iff_C_dvd
dvd_rfl
aeval_primPart_eq_zero πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semiring
Ring.toSemiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
primPartβ€”eq_zero_of_ne_zero_of_mul_left_eq_zero
IsDomain.to_noZeroDivisors
Module.nontrivial
IsDomain.toNontrivial
GCDMonoid.toIsCancelMulZero
FaithfulSMul.algebraMap_injective
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
content_eq_zero_iff
aeval_C
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
eq_C_content_mul_primPart
content_C πŸ“–mathematicalβ€”content
DFunLike.coe
RingHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
MonoidWithZeroHom
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
CommSemiring.toCommMonoidWithZero
MonoidWithZeroHom.funLike
normalize
NormalizedGCDMonoid.toNormalizationMonoid
β€”content.eq_1
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
support_monomial
Finset.gcd_singleton
coeff_C_zero
content_C_mul πŸ“–mathematicalβ€”content
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MonoidWithZeroHom
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
CommSemiring.toCommMonoidWithZero
MonoidWithZeroHom.funLike
normalize
NormalizedGCDMonoid.toNormalizationMonoid
β€”map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
MulZeroClass.zero_mul
content_zero
MonoidWithZeroHom.monoidWithZeroHomClass
content.eq_1
Finset.gcd_mul_left
Finset.ext
coeff_C_mul
IsRightCancelMulZero.to_noZeroDivisors
IsCancelMulZero.toIsRightCancelMulZero
GCDMonoid.toIsCancelMulZero
content_X πŸ“–mathematicalβ€”content
X
CommSemiring.toSemiring
CommRing.toCommSemiring
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”mul_one
content_X_mul
content_one
content_X_mul πŸ“–mathematicalβ€”content
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instMul
X
β€”content.eq_1
Finset.gcd_def
Nat.succ_injective
Finset.ext
mul_coeff_zero
coeff_X_zero
MulZeroClass.zero_mul
mul_comm
coeff_mul_X
Multiset.map_congr
Multiset.map_map
content_X_pow πŸ“–mathematicalβ€”content
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”pow_zero
content_one
pow_succ'
content_X_mul
content_dvd_coeff πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
content
coeff
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”Finset.gcd_dvd
mem_support_iff
dvd_zero
content_eq_gcd_leadingCoeff_content_eraseLead πŸ“–mathematicalβ€”content
GCDMonoid.gcd
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
NormalizedGCDMonoid.toGCDMonoid
leadingCoeff
CommSemiring.toSemiring
eraseLead
β€”content_zero
eraseLead_zero
gcd_same
map_zero
MonoidWithZeroHomClass.toZeroHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
content.eq_1
Finset.insert_erase
mem_support_iff
leadingCoeff.eq_1
leadingCoeff_eq_zero
Finset.gcd_insert
eraseLead_support
Finset.gcd_congr
eraseLead_coeff
Finset.mem_erase
content_eq_gcd_range_of_lt πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
content
Finset.gcd
CommSemiring.toCommMonoidWithZero
Finset.range
coeff
β€”dvd_antisymm_of_normalize_eq
GCDMonoid.toIsCancelMulZero
normalize_content
Finset.normalize_gcd
Finset.dvd_gcd_iff
content_dvd_coeff
Finset.gcd_mono
Mathlib.Tactic.Contrapose.contraposeβ‚‚
coeff_eq_zero_of_natDegree_lt
lt_of_lt_of_le
content_eq_gcd_range_succ πŸ“–mathematicalβ€”content
Finset.gcd
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
Finset.range
natDegree
CommSemiring.toSemiring
coeff
β€”content_eq_gcd_range_of_lt
content_eq_zero_iff πŸ“–mathematicalβ€”content
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instZero
β€”content.eq_1
Finset.gcd_eq_zero_iff
ext
coeff_zero
mem_support_iff
content_monomial πŸ“–mathematicalβ€”content
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
MonoidWithZeroHom
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
CommSemiring.toCommMonoidWithZero
MonoidWithZeroHom.funLike
normalize
NormalizedGCDMonoid.toNormalizationMonoid
β€”C_mul_X_pow_eq_monomial
content_C_mul
content_X_pow
mul_one
content_mul πŸ“–mathematicalβ€”content
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
mul_eq_zero
instNoZeroDivisors
IsRightCancelMulZero.to_noZeroDivisors
IsCancelMulZero.toIsRightCancelMulZero
GCDMonoid.toIsCancelMulZero
degree_eq_bot
Nat.WithBot.lt_zero_iff
Nat.cast_zero
MulZeroClass.zero_mul
content_zero
MulZeroClass.mul_zero
natDegree_mul
degree_eq_natDegree
mul_ne_zero
Nat.cast_lt
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
WithBot.charZero
Nat.instCharZero
eq_C_content_mul_primPart
normalize_content
normalize_eq_one
isUnit_iff_dvd_one
content_eq_gcd_leadingCoeff_content_eraseLead
leadingCoeff_mul
gcd_comm
Dvd.dvd.trans
gcd_mul_dvd_mul_gcd
content_mul_aux
mul_comm
primPart_ne_zero
Nat.cast_add
natDegree_primPart
degree_mul
WithBot.add_lt_add_iff_left
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
degree_erase_lt
content_primPart
mul_one
one_mul
WithBot.add_lt_add_iff_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
contravariant_swap_add_of_contravariant_add
dvd_refl
mul_assoc
content_C_mul
lt_of_le_of_lt
degree_le_natDegree
WithBot.coe_lt_coe
content_mul_aux πŸ“–mathematicalβ€”GCDMonoid.gcd
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
NormalizedGCDMonoid.toGCDMonoid
content
eraseLead
CommSemiring.toSemiring
Polynomial
instMul
leadingCoeff
β€”gcd_comm
gcd_content_eq_of_dvd_sub
self_sub_C_mul_X_pow
sub_mul
sub_sub
add_comm
sub_add
sub_sub_cancel
leadingCoeff_mul
IsRightCancelMulZero.to_noZeroDivisors
IsCancelMulZero.toIsRightCancelMulZero
GCDMonoid.toIsCancelMulZero
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
mul_assoc
dvd_sub
Dvd.intro
content_one πŸ“–mathematicalβ€”content
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”C_1
content_C
normalize_one
content_primPart πŸ“–mathematicalβ€”content
primPart
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”IsPrimitive.content_eq_one
isPrimitive_primPart
content_zero πŸ“–mathematicalβ€”content
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”C_0
content_C
normalize_zero
degree_gcd_le_left πŸ“–mathematicalβ€”WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
degree
CommSemiring.toSemiring
CommRing.toCommSemiring
GCDMonoid.gcd
Polynomial
CommSemiring.toCommMonoidWithZero
commSemiring
NormalizedGCDMonoid.toGCDMonoid
normalizedGcdMonoid
β€”natDegree_le_iff_degree_le
natDegree_le_of_dvd
IsRightCancelMulZero.to_noZeroDivisors
IsCancelMulZero.toIsRightCancelMulZero
GCDMonoid.toIsCancelMulZero
GCDMonoid.gcd_dvd_left
degree_eq_natDegree
degree_gcd_le_right πŸ“–mathematicalβ€”WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
degree
CommSemiring.toSemiring
CommRing.toCommSemiring
GCDMonoid.gcd
Polynomial
CommSemiring.toCommMonoidWithZero
commSemiring
NormalizedGCDMonoid.toGCDMonoid
normalizedGcdMonoid
β€”gcd_comm
degree_gcd_le_left
dvd_content_iff_C_dvd πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
content
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”C_dvd_iff_dvd_coeff
Dvd.dvd.trans
content_dvd_coeff
content.eq_1
Finset.dvd_gcd_iff
dvd_iff_content_dvd_content_and_primPart_dvd_primPart πŸ“–mathematicalβ€”Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
content
primPart
β€”content_mul
IsPrimitive.dvd_primPart_iff_dvd
isPrimitive_primPart
dvd_mul_right
dvd_mul_of_dvd_left
primPart_dvd
eq_C_content_mul_primPart
mul_dvd_mul
map_dvd
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
eq_C_content_mul_primPart πŸ“–mathematicalβ€”Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
content
primPart
β€”content_zero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
MulZeroClass.zero_mul
C_content_dvd
primPart.eq_1
evalβ‚‚_primPart_eq_zero πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
evalβ‚‚
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
primPartβ€”eq_zero_of_ne_zero_of_mul_left_eq_zero
IsDomain.to_noZeroDivisors
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
content_eq_zero_iff
evalβ‚‚_C
evalβ‚‚_mul
eq_C_content_mul_primPart
exists_primitive_lcm_of_isPrimitive πŸ“–mathematicalIsPrimitive
CommRing.toCommSemiring
Polynomial
CommSemiring.toSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
β€”IsPrimitive.mul
dvd_mul_right
dvd_mul_left
Nat.find_spec
Mathlib.Tactic.Push.not_forall_eq
Mathlib.Tactic.Contrapose.contraposeβ‚„
Nat.find_min'
natDegree_primPart
isPrimitive_primPart
IsPrimitive.dvd_primPart_iff_dvd
dvd_content_iff_C_dvd
eq_C_of_natDegree_le_zero
le_trans
IsUnit.dvd
normalize_eq_one
content_C
isPrimitive_iff_content_eq_one
natDegree_cancelLeads_lt_of_natDegree_le_natDegree
Nat.find_min
dvd_cancelLeads_of_dvd_of_dvd
dvd_add
Distrib.leftDistribClass
mul_one
pow_zero
tsub_eq_zero_iff_le
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
cancelLeads.eq_1
Dvd.intro_left
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Unique.instSubsingleton
IsPrimitive.ne_zero
isUnit_primPart_C
Dvd.dvd.trans
mul_ne_zero
instNoZeroDivisors
IsRightCancelMulZero.to_noZeroDivisors
IsCancelMulZero.toIsRightCancelMulZero
GCDMonoid.toIsCancelMulZero
C_eq_zero
leadingCoeff_eq_zero
sub_add_cancel
Associated.dvd
Associated.symm
primPart_mul
mul_comm
gcd_content_eq_of_dvd_sub πŸ“–mathematicalPolynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
instSub
CommRing.toRing
GCDMonoid.gcd
CommSemiring.toCommMonoidWithZero
NormalizedGCDMonoid.toGCDMonoid
content
β€”content_eq_gcd_range_of_lt
lt_of_le_of_lt
le_max_left
le_max_right
Finset.gcd_eq_of_dvd_sub
coeff_sub
coeff_C_mul
isPrimitive_iff_content_eq_one πŸ“–mathematicalβ€”IsPrimitive
CommRing.toCommSemiring
content
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”normalize_content
normalize_eq_one
IsPrimitive.eq_1
dvd_refl
isUnit_of_dvd_unit
isPrimitive_iff_isUnit_of_C_dvd πŸ“–mathematicalβ€”IsPrimitive
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
β€”β€”
isPrimitive_iff_ne_zero πŸ“–mathematicalβ€”IsPrimitive
Semifield.toCommSemiring
Field.toSemifield
β€”IsPrimitive.ne_zero
EuclideanDomain.toNontrivial
ne_zero_of_dvd_ne_zero
C_0
isPrimitive_of_dvd πŸ“–β€”IsPrimitive
Polynomial
CommSemiring.toSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
commSemiring
β€”β€”isPrimitive_iff_isUnit_of_C_dvd
dvd_trans
isPrimitive_one πŸ“–mathematicalβ€”IsPrimitive
Polynomial
CommSemiring.toSemiring
instOne
β€”isUnit_C
isUnit_of_dvd_one
isPrimitive_primPart πŸ“–mathematicalβ€”IsPrimitive
CommRing.toCommSemiring
primPart
β€”primPart_zero
isPrimitive_iff_content_eq_one
mul_left_cancelβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
GCDMonoid.toIsCancelMulZero
content_eq_zero_iff
eq_C_content_mul_primPart
mul_one
content_C_mul
normalize_content
isUnit_primPart_C πŸ“–mathematicalβ€”IsUnit
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
primPart
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
β€”map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
primPart_zero
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
Units.inv_mul
C_1
Units.mul_inv
mul_left_cancelβ‚€
instIsLeftCancelMulZeroOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
IsCancelMulZero.toIsLeftCancelMulZero
GCDMonoid.toIsCancelMulZero
C_eq_zero
normalize_eq_zero
content_C
eq_C_content_mul_primPart
mul_assoc
mul_one
natDegree_primPart πŸ“–mathematicalβ€”natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
primPart
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
natDegree_of_subsingleton
content_eq_zero_iff
C_eq_zero
primPart_zero
natDegree_one
eq_C_content_mul_primPart
natDegree_mul
IsRightCancelMulZero.to_noZeroDivisors
IsCancelMulZero.toIsRightCancelMulZero
GCDMonoid.toIsCancelMulZero
primPart_ne_zero
natDegree_C
zero_add
normUnit_content πŸ“–mathematicalβ€”NormalizationMonoid.normUnit
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
NormalizedGCDMonoid.toNormalizationMonoid
content
Units
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Units.instOne
β€”NormalizationMonoid.normUnit_zero
Units.ext
mul_left_cancelβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
GCDMonoid.toIsCancelMulZero
normalize_apply
normalize_content
Units.val_one
mul_one
normalize_content πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
MonoidWithZeroHom.funLike
normalize
NormalizedGCDMonoid.toNormalizationMonoid
content
β€”Finset.normalize_gcd
primPart_dvd πŸ“–mathematicalβ€”Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
primPart
β€”Dvd.intro_left
eq_C_content_mul_primPart
primPart_mul πŸ“–mathematicalβ€”primPart
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instMul
β€”mul_left_cancelβ‚€
instIsLeftCancelMulZeroOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
IsCancelMulZero.toIsLeftCancelMulZero
GCDMonoid.toIsCancelMulZero
C_eq_zero
content_eq_zero_iff
eq_C_content_mul_primPart
content_mul
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
primPart_ne_zero πŸ“–β€”β€”β€”β€”IsPrimitive.ne_zero
isPrimitive_primPart
primPart_zero πŸ“–mathematicalβ€”primPart
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instZero
instOne
β€”C_content_dvd

Polynomial.IsPrimitive

Theorems

NameKindAssumesProvesValidatesDepends On
content_eq_one πŸ“–mathematicalPolynomial.IsPrimitive
CommRing.toCommSemiring
Polynomial.content
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”Polynomial.isPrimitive_iff_content_eq_one
dvd_primPart_iff_dvd πŸ“–mathematicalPolynomial.IsPrimitive
CommRing.toCommSemiring
Polynomial
CommSemiring.toSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
Polynomial.primPart
β€”Dvd.dvd.trans
Dvd.intro_left
Polynomial.eq_C_content_mul_primPart
Dvd.intro
Polynomial.primPart_mul
primPart_eq
mul πŸ“–mathematicalPolynomial.IsPrimitive
CommRing.toCommSemiring
Polynomial
CommSemiring.toSemiring
Polynomial.instMul
β€”Polynomial.isPrimitive_iff_content_eq_one
Polynomial.content_mul
content_eq_one
mul_one
ne_zero πŸ“–β€”Polynomial.IsPrimitiveβ€”β€”IsUnit.ne_zero
dvd_zero
primPart_eq πŸ“–mathematicalPolynomial.IsPrimitive
CommRing.toCommSemiring
Polynomial.primPartβ€”one_mul
Polynomial.C_1
content_eq_one
Polynomial.eq_C_content_mul_primPart

Polynomial.Monic

Theorems

NameKindAssumesProvesValidatesDepends On
isPrimitive πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
Polynomial.IsPrimitiveβ€”IsUnit.of_mul_eq_one
instIsDedekindFiniteMonoid
Polynomial.coeff_C_mul

---

← Back to Index