Documentation Verification Report

ContentIdeal

πŸ“ Source: Mathlib/RingTheory/Polynomial/ContentIdeal.lean

Statistics

MetricCount
DefinitionscontentIdeal
1
Theoremscoeff_mem_contentIdeal, contentIdeal_C, contentIdeal_FG, contentIdeal_def, contentIdeal_eq_bot_iff, contentIdeal_eq_top_of_contentIdeal_mul_eq_top, contentIdeal_le_contentIdeal_of_dvd, contentIdeal_le_span_content, contentIdeal_map_eq_map_contentIdeal, contentIdeal_monomial, contentIdeal_mul_eq_top_of_contentIdeal_eq_top, contentIdeal_mul_le_mul_contentIdeal, contentIdeal_one, contentIdeal_zero, isPrimitive_iff_contentIdeal_eq_top, isPrimitive_of_contentIdeal_eq_top, mul_contentIdeal_le_radical_contentIdeal_mul, contentIdeal_eq_span_content_of_isPrincipal, contentIdeal_generator_dvd, contentIdeal_generator_dvd_coeff, contentIdeal_le_span_iff_dvd, isPrimitive_iff_contentIdeal_eq_top
22
Total23

Polynomial

Definitions

NameCategoryTheorems
contentIdeal πŸ“–CompOp
21 mathmath: contentIdeal_one, contentIdeal_def, Submodule.IsPrincipal.contentIdeal_le_span_iff_dvd, isPrimitive_iff_contentIdeal_eq_top, Submodule.IsPrincipal.contentIdeal_generator_dvd_coeff, contentIdeal_eq_top_iff_forall_gaussNorm_eq_one, gaussNorm_lt_one_iff_contentIdeal_le, Submodule.IsPrincipal.contentIdeal_eq_span_content_of_isPrincipal, contentIdeal_C, contentIdeal_FG, contentIdeal_map_eq_map_contentIdeal, contentIdeal_monomial, contentIdeal_eq_bot_iff, contentIdeal_zero, Submodule.IsPrincipal.contentIdeal_generator_dvd, contentIdeal_le_span_content, contentIdeal_mul_le_mul_contentIdeal, contentIdeal_le_contentIdeal_of_dvd, mul_contentIdeal_le_radical_contentIdeal_mul, coeff_mem_contentIdeal, Submodule.IsPrincipal.isPrimitive_iff_contentIdeal_eq_top

Theorems

NameKindAssumesProvesValidatesDepends On
coeff_mem_contentIdeal πŸ“–mathematicalβ€”Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
contentIdeal
coeff
β€”AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
Ideal.subset_span
coeff_mem_coeffs
contentIdeal_C πŸ“–mathematicalβ€”contentIdeal
DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Ideal.span
Set
Set.instSingletonSet
β€”monomial_zero_left
contentIdeal_monomial
contentIdeal_FG πŸ“–mathematicalβ€”Ideal.FG
contentIdeal
β€”β€”
contentIdeal_def πŸ“–mathematicalβ€”contentIdeal
Ideal.span
SetLike.coe
Finset
Finset.instSetLike
coeffs
β€”β€”
contentIdeal_eq_bot_iff πŸ“–mathematicalβ€”contentIdeal
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Polynomial
instZero
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
coeff_mem_coeffs
leadingCoeff_ne_zero
Finset.coe_empty
instIsEmptyFalse
contentIdeal_eq_top_of_contentIdeal_mul_eq_top πŸ“–β€”contentIdeal
CommSemiring.toSemiring
Polynomial
instMul
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”β€”le_antisymm
le_top
IsScalarTower.right
contentIdeal_mul_le_mul_contentIdeal
Ideal.mul_le_right
Ideal.instIsTwoSided
contentIdeal_le_contentIdeal_of_dvd πŸ“–mathematicalPolynomial
CommSemiring.toSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
commSemiring
Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
contentIdeal
β€”le_trans
IsScalarTower.left
contentIdeal_mul_le_mul_contentIdeal
Ideal.mul_le_right
Ideal.instIsTwoSided
contentIdeal_le_span_content πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
contentIdeal
Ideal.span
Set
Set.instSingletonSet
content
β€”contentIdeal_def
Ideal.span_le
mem_coeffs_iff
Finset.mem_coe
SetLike.mem_coe
Ideal.mem_span_singleton
content_dvd_coeff
contentIdeal_map_eq_map_contentIdeal πŸ“–mathematicalβ€”contentIdeal
map
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”Set.ext
Set.union_singleton
coeff_map
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Ideal.map_span
Ideal.span_insert_zero
contentIdeal_monomial πŸ“–mathematicalβ€”contentIdeal
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
Ideal.span
Set
Set.instSingletonSet
β€”monomial_zero_right
Finset.coe_empty
Ideal.span_empty
Ideal.span_zero
coeffs_monomial
Finset.coe_singleton
contentIdeal_mul_eq_top_of_contentIdeal_eq_top πŸ“–mathematicalcontentIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Polynomial
instMul
β€”Ideal.radical_eq_top
le_antisymm
le_top
IsScalarTower.right
Ideal.mul_top
Ideal.instIsTwoSided_1
mul_contentIdeal_le_radical_contentIdeal_mul
contentIdeal_mul_le_mul_contentIdeal πŸ“–mathematicalβ€”Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
contentIdeal
Polynomial
instMul
Submodule.mul
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
β€”IsScalarTower.left
contentIdeal_def
Ideal.span_le
coeff_mul
Submodule.addSubmonoidClass
contentIdeal_one πŸ“–mathematicalβ€”contentIdeal
Polynomial
instOne
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”Ideal.span_singleton_one
contentIdeal_C
C_1
contentIdeal_zero πŸ“–mathematicalβ€”contentIdeal
Polynomial
instZero
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”Finset.coe_empty
Ideal.span_empty
isPrimitive_iff_contentIdeal_eq_top πŸ“–mathematicalβ€”IsPrimitive
contentIdeal
CommSemiring.toSemiring
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”Submodule.IsPrincipal.isPrimitive_iff_contentIdeal_eq_top
IsBezout.isPrincipal_of_FG
contentIdeal_FG
isPrimitive_of_contentIdeal_eq_top πŸ“–mathematicalcontentIdeal
CommSemiring.toSemiring
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsPrimitiveβ€”top_isPrincipal
Submodule.IsPrincipal.contentIdeal_le_span_iff_dvd
mul_contentIdeal_le_radical_contentIdeal_mul πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.mul
IsScalarTower.right
Algebra.id
contentIdeal
Ideal.radical
Polynomial
instMul
β€”IsScalarTower.right
Ideal.radical_eq_sInf
le_sInf_iff
Ideal.IsPrime.mul_le
Ideal.instIsTwoSided_1
RingHom.instRingHomClass
Ideal.mk_ker
map_mul
instNoZeroDivisors
Ideal.Quotient.noZeroDivisors

Submodule.IsPrincipal

Theorems

NameKindAssumesProvesValidatesDepends On
contentIdeal_eq_span_content_of_isPrincipal πŸ“–mathematicalβ€”Polynomial.contentIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.span
Set
Set.instSingletonSet
Polynomial.content
β€”le_antisymm
Polynomial.contentIdeal_le_span_content
Ideal.span_singleton_generator
Ideal.span_singleton_le_span_singleton
Polynomial.content.eq_1
Finset.dvd_gcd_iff
contentIdeal_generator_dvd_coeff
contentIdeal_generator_dvd πŸ“–mathematicalβ€”Polynomial
CommSemiring.toSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
Polynomial.commSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
generator
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Polynomial.contentIdeal
β€”Polynomial.C_dvd_iff_dvd_coeff
contentIdeal_generator_dvd_coeff
contentIdeal_generator_dvd_coeff πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
generator
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Polynomial.contentIdeal
Polynomial.coeff
β€”Polynomial.coeff_mem_contentIdeal
mem_iff_eq_smul_generator
contentIdeal_le_span_iff_dvd πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Polynomial.contentIdeal
Ideal.span
Set
Set.instSingletonSet
Polynomial
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
Polynomial.commSemiring
DFunLike.coe
RingHom
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
β€”Ideal.span_singleton_generator
instIsTransDvd
map_dvd
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
Ideal.span_singleton_le_span_singleton
contentIdeal_generator_dvd
Polynomial.contentIdeal_C
Polynomial.contentIdeal_le_contentIdeal_of_dvd
isPrimitive_iff_contentIdeal_eq_top πŸ“–mathematicalβ€”Polynomial.IsPrimitive
Polynomial.contentIdeal
CommSemiring.toSemiring
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”Mathlib.Tactic.Contrapose.contrapose₁
contentIdeal_generator_dvd
Ideal.span_singleton_generator
Polynomial.isPrimitive_of_contentIdeal_eq_top

---

← Back to Index