Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/Polynomial/Cyclotomic/Basic.lean

Statistics

MetricCount
Definitionscyclotomic, cyclotomic'
2
Theoremspow_add_pow_eq_prod_add_mul, pow_sub_pow_eq_prod_sub_mul, X_pow_sub_one_dvd_prod_cyclotomic, X_pow_sub_one_eq_prod, X_pow_sub_one_mul_cyclotomic_dvd_X_pow_sub_one_of_dvd, X_pow_sub_one_mul_prod_cyclotomic_eq_X_pow_sub_one_of_dvd, X_pow_sub_one_splits, coprime_of_root_cyclotomic, monic, cyclotomic'_eq_X_pow_sub_one_div, cyclotomic'_ne_zero, cyclotomic'_one, cyclotomic'_splits, cyclotomic'_two, cyclotomic'_zero, dvd_X_pow_sub_one, eval_apply, eval_apply_ofReal, isPrimitive, monic, cyclotomic_coeff_zero, cyclotomic_dvd_geom_sum_of_dvd, cyclotomic_eq_X_pow_sub_one_div, cyclotomic_eq_prod_X_pow_sub_one_pow_moebius, cyclotomic_eq_prod_X_sub_primitiveRoots, cyclotomic_ne_zero, cyclotomic_one, cyclotomic_prime, cyclotomic_prime_mul_X_sub_one, cyclotomic_prime_pow_eq_geom_sum, cyclotomic_prime_pow_mul_X_pow_sub_one, cyclotomic_three, cyclotomic_two, cyclotomic_zero, degree_cyclotomic, degree_cyclotomic', degree_cyclotomic_pos, dvd_C_mul_X_sub_one_pow_add_one, eq_cyclotomic_iff, int_coeff_of_cyclotomic', int_cyclotomic_rw, int_cyclotomic_spec, int_cyclotomic_unique, map_cyclotomic, map_cyclotomic_int, natDegree_cyclotomic, natDegree_cyclotomic', natDegree_cyclotomic_le, orderOf_root_cyclotomic_dvd, prod_cyclotomic'_eq_X_pow_sub_one, prod_cyclotomic_eq_X_pow_sub_one, prod_cyclotomic_eq_geom_sum, roots_of_cyclotomic, separable_cyclotomic, squarefree_cyclotomic, unique_int_coeff_of_cycl
56
Total58

IsPrimitiveRoot

Theorems

NameKindAssumesProvesValidatesDepends On
pow_add_pow_eq_prod_add_mul πŸ“–mathematicalOdd
Nat.instSemiring
IsPrimitiveRoot
CommRing.toCommMonoid
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Finset.prod
Polynomial.nthRootsFinset
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toMul
β€”Odd.neg_pow
sub_neg_eq_add
Finset.prod_congr
mul_neg
pow_sub_pow_eq_prod_sub_mul
Odd.pos
Nat.instCanonicallyOrderedAdd
Nat.instNontrivial
pow_sub_pow_eq_prod_sub_mul πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Finset.prod
Polynomial.nthRootsFinset
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”FaithfulSMul.algebraMap_injective
FractionRing.instFaithfulSMul
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.self
IsDomain.toNontrivial
map_sub
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
map_prod
Finset.prod_congr
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
map_of_injective
instIsDomain
Finset.prod_nbij
Polynomial.map_mem_nthRootsFinset_one
Set.surj_on_of_inj_on_of_ncard_le
Set.ncard_coe_finset
card_nthRootsFinset
Set.toFinite
Finite.of_fintype

Polynomial

Definitions

NameCategoryTheorems
cyclotomic πŸ“–CompOp
82 mathmath: evalβ‚‚_one_cyclotomic_prime, eq_cyclotomic_iff, cyclotomic_six, cyclotomic.irreducible, cyclotomic_dvd_geom_sum_of_dvd, cyclotomic_pos', sub_one_pow_totient_le_cyclotomic_eval, cyclotomic_expand_eq_cyclotomic_mul, IsCyclotomicExtension.adjoin_roots_cyclotomic_eq_adjoin_root_cyclotomic, cyclotomic.eval_apply_ofReal, IsCyclotomicExtension.aeval_zeta, prod_cyclotomic_eq_X_pow_sub_one, cyclotomic_eval_lt_add_one_pow_totient, natDegree_cyclotomic, cyclotomic_two, squarefree_cyclotomic, X_pow_sub_one_dvd_prod_cyclotomic, sub_one_pow_totient_lt_natAbs_cyclotomic_eval, sub_one_lt_natAbs_cyclotomic_eval, cyclotomic_eq_prod_X_sub_primitiveRoots, cyclotomic.roots_to_finset_eq_primitiveRoots, int_cyclotomic_rw, cyclotomic_mul_prime_dvd_eq_pow, IsCyclotomicExtension.splits_cyclotomic, roots_cyclotomic_nodup, isRoot_cyclotomic_iff_charZero, cyclotomic_prime_pow_eq_geom_sum, cyclotomic_pos_and_nonneg, cyclotomic.isCoprime_rat, cyclotomic_prime_pow_mul_X_pow_sub_one, eval_one_cyclotomic_prime_pow, cyclotomic_coeff_zero, cyclotomic_zero, cyclotomic.dvd_X_pow_sub_one, cyclotomic_dvd_of_mahlerMeasure_eq_one, cyclotomic.isPrimitive, cyclotomic_injective, IsCyclotomicExtension.zeta_isRoot, cyclotomic.roots_eq_primitiveRoots_val, cyclotomic_mul_prime_pow_eq, cyclotomic.eval_apply, cyclotomic_prime_pow_comp_X_add_one_isEisensteinAt, natDegree_cyclotomic_le, X_pow_sub_one_mul_prod_cyclotomic_eq_X_pow_sub_one_of_dvd, eval_one_cyclotomic_not_prime_pow, eval_one_cyclotomic_prime, cyclotomic.monic, cyclotomic_eq_minpoly_rat, cyclotomic_mul_prime_eq_pow_of_not_dvd, cyclotomic_one, prod_cyclotomic_eq_geom_sum, map_cyclotomic_int, cyclotomic_eq_prod_X_pow_sub_one_pow_moebius, cyclotomic_nonneg, cyclotomic.irreducible_rat, IsCyclotomicExtension.splitting_field_cyclotomic, map_cyclotomic, cyclotomic_eval_le_add_one_pow_totient, cyclotomic_three, cyclotomic_comp_X_add_one_isEisensteinAt, separable_cyclotomic, evalβ‚‚_one_cyclotomic_prime_pow, isRoot_cyclotomic_prime_pow_mul_iff_of_charP, sub_one_pow_totient_lt_cyclotomic_eval, cyclotomic_prime, degree_cyclotomic_pos, cyclotomic_mahlerMeasure_eq_one, cyclotomic_expand_eq_cyclotomic, IsCyclotomicExtension.adjoin_roots_cyclotomic_eq_adjoin_nth_roots, X_pow_sub_one_mul_cyclotomic_dvd_X_pow_sub_one_of_dvd, IsPrimitiveRoot.minpoly_dvd_cyclotomic, cyclotomic_eq_minpoly, isRoot_of_unity_iff, cyclotomic_eq_X_pow_sub_one_div, degree_cyclotomic, cyclotomic_prime_mul_X_sub_one, cyclotomic_pos, normalizedFactors_cyclotomic_card, isRoot_cyclotomic_iff, int_cyclotomic_unique, IsPrimitiveRoot.isRoot_cyclotomic, int_cyclotomic_spec
cyclotomic' πŸ“–CompOp
14 mathmath: int_coeff_of_cyclotomic', unique_int_coeff_of_cycl, cyclotomic'.monic, cyclotomic'_one, int_cyclotomic_rw, prod_cyclotomic'_eq_X_pow_sub_one, cyclotomic'_two, roots_of_cyclotomic, degree_cyclotomic', cyclotomic'_splits, natDegree_cyclotomic', cyclotomic'_zero, cyclotomic'_eq_X_pow_sub_one_div, int_cyclotomic_spec

Theorems

NameKindAssumesProvesValidatesDepends On
X_pow_sub_one_dvd_prod_cyclotomic πŸ“–mathematicalβ€”Polynomial
Ring.toSemiring
CommRing.toRing
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
instSub
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
instOne
Finset.prod
CommRing.toCommMonoid
Nat.properDivisors
cyclotomic
β€”Nat.mem_properDivisors
lt_of_le_of_ne
Nat.divisor_le
Nat.mem_divisors
LT.lt.ne'
Finset.sdiff_union_of_subset
Nat.divisors_subset_properDivisors
ne_of_lt
Finset.prod_union
Finset.sdiff_disjoint
prod_cyclotomic_eq_X_pow_sub_one
Nat.pos_of_mem_properDivisors
mul_comm
X_pow_sub_one_eq_prod πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instSub
CommRing.toRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
instOne
Finset.prod
commRing
nthRootsFinset
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
β€”nthRootsFinset.eq_1
IsPrimitiveRoot.nthRoots_one_nodup
Multiset.toFinset_eq
nthRoots.eq_1
monic_X_pow_sub_C
ne_of_lt
prod_multiset_X_sub_C_of_monic_of_roots_card_eq
natDegree_X_pow_sub_C
IsDomain.toNontrivial
IsPrimitiveRoot.card_nthRoots_one
X_pow_sub_one_mul_cyclotomic_dvd_X_pow_sub_one_of_dvd πŸ“–mathematicalFinset
Finset.instMembership
Nat.properDivisors
Polynomial
Ring.toSemiring
CommRing.toRing
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
instMul
instSub
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
instOne
cyclotomic
β€”X_pow_sub_one_mul_prod_cyclotomic_eq_X_pow_sub_one_of_dvd
Nat.mem_properDivisors
LT.lt.ne_bot
Nat.insert_self_properDivisors
Finset.insert_sdiff_of_notMem
LT.lt.not_ge
Nat.divisor_le
Finset.prod_insert
Finset.notMem_sdiff_of_notMem_left
Nat.self_notMem_properDivisors
mul_assoc
X_pow_sub_one_mul_prod_cyclotomic_eq_X_pow_sub_one_of_dvd πŸ“–mathematicalβ€”Polynomial
Ring.toSemiring
CommRing.toRing
instMul
instSub
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
instOne
Finset.prod
CommRing.toCommMonoid
commRing
Finset
Finset.instSDiff
Nat.divisors
cyclotomic
β€”lt_of_le_of_ne'
zero_le
Nat.instCanonicallyOrderedAdd
prod_cyclotomic_eq_X_pow_sub_one
mul_comm
Finset.prod_sdiff
Nat.divisors_subset_of_dvd
ne_of_gt
X_pow_sub_one_splits πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial
instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”instIsDomain
splits_iff_card_roots
nthRoots.eq_1
IsPrimitiveRoot.card_nthRoots_one
natDegree_X_pow_sub_C
IsLocalRing.toNontrivial
Field.instIsLocalRing
coprime_of_root_cyclotomic πŸ“–β€”IsRoot
ZMod
Ring.toSemiring
CommRing.toRing
ZMod.commRing
cyclotomic
DFunLike.coe
RingHom
Nat.instNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
Nat.castRingHom
β€”β€”Nat.Prime.coprime_iff_not_dvd
Fact.out
ZMod.natCast_eq_zero_iff
cyclotomic_one
coeff_sub
coeff_X_zero
coeff_one_zero
zero_sub
NeZero.one
ZMod.nontrivial
Nat.Prime.one_lt'
coeff_zero_eq_eval_zero
eq_natCast
RingHom.instRingHomClass
IsRoot.def
one_ne_zero
cyclotomic_coeff_zero
lt_of_le_of_ne
cyclotomic'_eq_X_pow_sub_one_div πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
cyclotomic'
divByMonic
CommRing.toRing
Polynomial
Ring.toSemiring
instSub
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
instOne
Finset.prod
commRing
Nat.properDivisors
β€”prod_cyclotomic'_eq_X_pow_sub_one
Nat.self_notMem_properDivisors
Nat.cons_self_properDivisors
LT.lt.ne'
Finset.prod_cons
monic_prod_of_monic
cyclotomic'.monic
div_modByMonic_unique
zero_add
mul_comm
bot_lt_iff_ne_bot
Monic.ne_zero
IsDomain.toNontrivial
degree_eq_bot
cyclotomic'_ne_zero πŸ“–β€”β€”β€”β€”Monic.ne_zero
IsDomain.toNontrivial
cyclotomic'.monic
cyclotomic'_one πŸ“–mathematicalβ€”cyclotomic'
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instSub
CommRing.toRing
X
instOne
β€”Finset.prod_congr
IsPrimitiveRoot.primitiveRoots_one
Finset.prod_singleton
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
cyclotomic'_splits πŸ“–mathematicalβ€”Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
cyclotomic'
instIsDomain
Field.toSemifield
β€”Splits.prod
instIsDomain
cyclotomic'_two πŸ“–mathematicalβ€”cyclotomic'
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instAdd
X
instOne
β€”cyclotomic'.eq_1
Nat.instAtLeastTwoHAddOfNat
mem_primitiveRoots
two_pos
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsPrimitiveRoot.neg_one
IsDomain.toNontrivial
IsPrimitiveRoot.eq_neg_one_of_two_right
IsDomain.to_noZeroDivisors
Finset.prod_congr
Finset.prod_singleton
map_neg
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
sub_neg_eq_add
cyclotomic'_zero πŸ“–mathematicalβ€”cyclotomic'
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instOne
β€”Finset.prod_congr
primitiveRoots_zero
cyclotomic_coeff_zero πŸ“–mathematicalβ€”coeff
Ring.toSemiring
CommRing.toRing
cyclotomic
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”Nat.strong_induction_on
Finset.insert_erase
Nat.one_mem_properDivisors_iff_one_lt
lt_of_lt_of_le
Nat.instAtLeastTwoHAddOfNat
one_lt_two
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Finset.prod_insert
Finset.notMem_erase
cyclotomic_one
Ne.le_iff_lt
Finset.mem_erase
Nat.pos_of_mem_properDivisors
Nat.mem_properDivisors
Finset.prod_congr
refl
IsPreorder.toRefl
IsEquiv.toIsPreorder
eq_isEquiv
Finset.prod_const_one
coeff_sub
coeff_X_zero
coeff_one_zero
zero_sub
mul_one
prod_cyclotomic_eq_X_pow_sub_one
LE.le.trans_lt
zero_le_one
Nat.self_notMem_properDivisors
Nat.cons_self_properDivisors
LT.lt.ne_bot
Finset.prod_cons
mul_coeff_zero
coeff_zero_prod
mul_neg
coeff_zero_eq_eval_zero
eval_sub
eval_pow
eval_X
zero_pow
ne_of_gt
lt_trans
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
eval_one
cyclotomic_dvd_geom_sum_of_dvd πŸ“–mathematicalβ€”Polynomial
Ring.toSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Semiring.toNonUnitalSemiring
semiring
cyclotomic
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
ring
Finset.range
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
β€”prod_cyclotomic_eq_geom_sum
Finset.dvd_prod_of_mem
LT.lt.ne'
map_cyclotomic_int
map_sum
Finset.sum_congr
map_pow
map_X
map_dvd
cyclotomic_eq_X_pow_sub_one_div πŸ“–mathematicalβ€”cyclotomic
CommRing.toRing
divByMonic
Polynomial
Ring.toSemiring
instSub
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
instOne
Finset.prod
CommRing.toCommMonoid
commRing
Nat.properDivisors
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Unique.instSubsingleton
prod_cyclotomic_eq_X_pow_sub_one
Nat.self_notMem_properDivisors
Nat.cons_self_properDivisors
LT.lt.ne'
Finset.prod_cons
monic_prod_of_monic
cyclotomic.monic
div_modByMonic_unique
zero_add
mul_comm
bot_lt_iff_ne_bot
Monic.ne_zero
degree_eq_bot
cyclotomic_eq_prod_X_pow_sub_one_pow_moebius πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Polynomial
Ring.toSemiring
CommRing.toRing
RatFunc
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RatFunc.instField
RingHom.instFunLike
algebraMap
RatFunc.instAlgebraOfPolynomial
Algebra.id
cyclotomic
Finset.prod
CommRing.toCommMonoid
RatFunc.instCommRing
Nat.divisorsAntidiagonal
DivInvMonoid.toZPow
DivisionRing.toDivInvMonoid
Field.toDivisionRing
instSub
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
instOne
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
ArithmeticFunction.instFunLikeNat
ArithmeticFunction.moebius
β€”cyclotomic_zero
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Finset.prod_congr
Nat.divisorsAntidiagonal_zero
map_sub
RingHomClass.toAddMonoidHomClass
map_pow
prod_cyclotomic_eq_X_pow_sub_one
map_prod
ArithmeticFunction.prod_eq_iff_prod_pow_moebius_eq_of_nonzero
RatFunc.instIsFractionRingPolynomial
IsDomain.toNontrivial
Monic.ne_zero
monic_X_pow_sub_C
ne_of_gt
cyclotomic_eq_prod_X_sub_primitiveRoots πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
cyclotomic
CommRing.toRing
Finset.prod
Polynomial
Ring.toSemiring
commRing
primitiveRoots
CommSemiring.toSemiring
CommRing.toCommSemiring
instSub
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”cyclotomic'.eq_1
Nat.strong_induction_on
cyclotomic_zero
cyclotomic'.congr_simp
cyclotomic'_zero
Nat.mem_properDivisors
IsPrimitiveRoot.pow
mul_comm
cyclotomic_eq_X_pow_sub_one_div
cyclotomic'_eq_X_pow_sub_one_div
Finset.prod_congr
refl
IsPreorder.toRefl
IsEquiv.toIsPreorder
eq_isEquiv
cyclotomic_ne_zero πŸ“–β€”β€”β€”β€”Monic.ne_zero
cyclotomic.monic
cyclotomic_one πŸ“–mathematicalβ€”cyclotomic
Polynomial
Ring.toSemiring
instSub
X
instOne
β€”instIsDomain
map_sub
map_X
map_one
cyclotomic'_one
map_cyclotomic_int
int_cyclotomic_unique
cyclotomic_prime πŸ“–mathematicalβ€”cyclotomic
Finset.sum
Polynomial
Ring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
ring
Finset.range
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
β€”prod_cyclotomic_eq_geom_sum
Nat.Prime.pos
Fact.out
Nat.Prime.divisors
Finset.erase_insert
Iff.not
Finset.mem_singleton
Nat.Prime.ne_one
Finset.prod_singleton
map_cyclotomic_int
map_sum
Finset.sum_congr
map_pow
map_X
cyclotomic_prime_mul_X_sub_one πŸ“–mathematicalβ€”Polynomial
Ring.toSemiring
instMul
cyclotomic
instSub
X
instOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
β€”cyclotomic_prime
geom_sum_mul
cyclotomic_prime_pow_eq_geom_sum πŸ“–mathematicalNat.Primecyclotomic
Monoid.toNatPow
Nat.instMonoid
CommRing.toRing
Finset.sum
Polynomial
Ring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
Finset.range
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
β€”eq_cyclotomic_iff
pow_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.instZeroLEOneClass
Nat.Prime.pos
Nat.prod_properDivisors_prime_pow
zero_add
pow_one
cyclotomic_prime
Finset.sum_congr
pow_zero
Finset.prod_range_succ
mul_comm
geom_sum_mul
pow_mul
pow_add
cyclotomic_prime_pow_mul_X_pow_sub_one πŸ“–mathematicalβ€”Polynomial
Ring.toSemiring
CommRing.toRing
instMul
cyclotomic
Monoid.toNatPow
Nat.instMonoid
instSub
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
instOne
β€”cyclotomic_prime_pow_eq_geom_sum
Fact.out
geom_sum_mul
pow_mul
pow_succ
mul_comm
cyclotomic_three πŸ“–mathematicalβ€”cyclotomic
Polynomial
Ring.toSemiring
instAdd
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
instOne
β€”cyclotomic_prime
Nat.fact_prime_three
Finset.sum_range_succ'
Finset.sum_singleton
zero_add
pow_one
pow_zero
cyclotomic_two πŸ“–mathematicalβ€”cyclotomic
Polynomial
Ring.toSemiring
instAdd
X
instOne
β€”cyclotomic_prime
Nat.fact_prime_two
geom_sum_two
cyclotomic_zero πŸ“–mathematicalβ€”cyclotomic
Polynomial
Ring.toSemiring
instOne
β€”β€”
degree_cyclotomic πŸ“–mathematicalβ€”degree
Ring.toSemiring
cyclotomic
WithBot
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Nat.totient
β€”map_cyclotomic_int
degree_map_eq_of_leadingCoeff_ne_zero
Monic.leadingCoeff
instIsDomain
int_cyclotomic_spec
eq_intCast
RingHom.instRingHomClass
Int.cast_one
NeZero.one
degree_one
Int.instNontrivial
CharP.cast_eq_zero
CharP.ofCharZero
WithBot.charZero
Nat.instCharZero
degree_cyclotomic'
Nat.instAtLeastTwoHAddOfNat
Complex.isPrimitiveRoot_exp
degree_cyclotomic' πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
degree
CommSemiring.toSemiring
CommRing.toCommSemiring
cyclotomic'
WithBot
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Nat.totient
β€”degree_eq_natDegree
cyclotomic'_ne_zero
natDegree_cyclotomic'
degree_cyclotomic_pos πŸ“–mathematicalβ€”WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
degree
Ring.toSemiring
cyclotomic
β€”degree_cyclotomic
Nat.instCanonicallyOrderedAdd
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
StarOrderedRing.toExistsAddOfLE
Nat.instStarOrderedRing
Nat.instNontrivial
Nat.cast_pos
WithBot.instIsOrderedRing
IsStrictOrderedRing.toIsOrderedRing
WithBot.nontrivial
Nat.totient_pos
dvd_C_mul_X_sub_one_pow_add_one πŸ“–mathematicalNat.Prime
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Polynomial
commRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
instAdd
instSub
instMul
X
instOne
β€”Nat.Prime.dvd_add_pow_sub_pow_of_dvd
mul_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Dvd.dvd.trans
map_dvd
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
map_mul
map_natCast
sub_neg_eq_add
one_pow
Odd.neg_pow
Nat.Prime.odd_of_ne_two
sub_eq_add_neg
eq_cyclotomic_iff πŸ“–mathematicalβ€”cyclotomic
CommRing.toRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.toSemiring
instMul
Finset.prod
CommRing.toCommMonoid
commRing
Nat.properDivisors
instSub
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
instOne
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Unique.instSubsingleton
prod_cyclotomic_eq_X_pow_sub_one
Nat.self_notMem_properDivisors
Nat.cons_self_properDivisors
LT.lt.ne'
Finset.prod_cons
monic_prod_of_monic
cyclotomic.monic
cyclotomic_eq_X_pow_sub_one_div
div_modByMonic_unique
zero_add
mul_comm
degree_zero
bot_lt_iff_ne_bot
Monic.ne_zero
degree_eq_bot
int_coeff_of_cyclotomic' πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
map
Int.instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
cyclotomic'
degree
Monic
β€”lifts_and_degree_eq_and_monic
IsDomain.toNontrivial
Nat.strong_induction_on
map_one
cyclotomic'_zero
monic_prod_of_monic
cyclotomic'.monic
Subsemiring.prod_mem
Nat.mem_properDivisors
IsPrimitiveRoot.pow
mul_comm
zero_add
prod_cyclotomic'_eq_X_pow_sub_one
Nat.self_notMem_properDivisors
Nat.cons_self_properDivisors
LT.lt.ne'
Finset.prod_cons
Monic.ne_zero
div_modByMonic_unique
coe_mapRingHom
map_divByMonic
map_sub
map_pow
map_X
int_cyclotomic_rw πŸ“–mathematicalβ€”cyclotomic
Int.instRing
Polynomial
Int.instSemiring
Complex
CommSemiring.toSemiring
CommRing.toCommSemiring
Complex.commRing
map
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
cyclotomic'
instIsDomain
Field.toSemifield
Complex.instField
WithBot
degree
Monic
int_coeff_of_cyclotomic'
Complex.exp
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instMul
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal
Real.pi
Complex.I
Complex.isPrimitiveRoot_exp
β€”instIsDomain
int_coeff_of_cyclotomic'
Nat.instAtLeastTwoHAddOfNat
Complex.isPrimitiveRoot_exp
ext
coeff_map
eq_intCast
RingHom.instRingHomClass
int_cyclotomic_spec πŸ“–mathematicalβ€”map
Complex
Int.instSemiring
Complex.instSemiring
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
Complex.commRing
cyclotomic
Int.instRing
cyclotomic'
instIsDomain
Field.toSemifield
Complex.instField
degree
Ring.toSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Monic
β€”instIsDomain
cyclotomic'.congr_simp
cyclotomic'_zero
degree_one
Complex.instNontrivial
map_one
Int.instNontrivial
int_coeff_of_cyclotomic'
Nat.instAtLeastTwoHAddOfNat
Complex.isPrimitiveRoot_exp
int_cyclotomic_rw
int_cyclotomic_unique πŸ“–mathematicalmap
Complex
Int.instSemiring
Complex.instSemiring
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
Complex.commRing
cyclotomic'
instIsDomain
Field.toSemifield
Complex.instField
cyclotomic
Int.instRing
β€”instIsDomain
map_injective
Int.cast_injective
Complex.instCharZero
int_cyclotomic_spec
map_cyclotomic πŸ“–mathematicalβ€”map
Ring.toSemiring
cyclotomic
β€”map_cyclotomic_int
map_map
RingHom.Int.subsingleton_ringHom
Lean.Meta.FastSubsingleton.elim
map_cyclotomic_int πŸ“–mathematicalβ€”map
Int.instSemiring
Ring.toSemiring
Int.castRingHom
Ring.toNonAssocRing
cyclotomic
Int.instRing
β€”cyclotomic'.congr_simp
map_one
Int.castRingHom_int
map_id
natDegree_cyclotomic πŸ“–mathematicalβ€”natDegree
Ring.toSemiring
cyclotomic
Nat.totient
β€”natDegree.eq_1
degree_cyclotomic
natDegree_cyclotomic' πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
cyclotomic'
Nat.totient
β€”cyclotomic'.eq_1
natDegree_prod
IsDomain.to_noZeroDivisors
X_sub_C_ne_zero
IsDomain.toNontrivial
Finset.sum_congr
natDegree_X_sub_C
Finset.sum_const
IsPrimitiveRoot.card_primitiveRoots
nsmul_eq_mul
mul_one
natDegree_cyclotomic_le πŸ“–mathematicalβ€”natDegree
Ring.toSemiring
cyclotomic
Nat.totient
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
natDegree_of_subsingleton
Nat.instCanonicallyOrderedAdd
natDegree_cyclotomic
le_refl
orderOf_root_cyclotomic_dvd πŸ“–mathematicalIsRoot
ZMod
Ring.toSemiring
CommRing.toRing
ZMod.commRing
cyclotomic
DFunLike.coe
RingHom
Nat.instNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
Nat.castRingHom
orderOf
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Units.instMonoid
ZMod.unitOfCoprime
coprime_of_root_cyclotomic
β€”orderOf_dvd_of_pow_eq_one
coprime_of_root_cyclotomic
prod_cyclotomic_eq_X_pow_sub_one
Nat.self_notMem_properDivisors
Nat.cons_self_properDivisors
LT.lt.ne'
Finset.prod_cons
eval_mul
IsRoot.def
MulZeroClass.zero_mul
Units.val_eq_one
sub_eq_zero
eq_natCast
RingHom.instRingHomClass
eval_sub
eval_pow
eval_X
eval_one
prod_cyclotomic'_eq_X_pow_sub_one πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Finset.prod
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
Nat.divisors
cyclotomic'
instSub
CommRing.toRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
instOne
β€”IsPrimitiveRoot.disjoint
Finset.prod_congr
Finset.prod_biUnion
X_pow_sub_one_eq_prod
IsPrimitiveRoot.nthRoots_one_eq_biUnion_primitiveRoots
prod_cyclotomic_eq_X_pow_sub_one πŸ“–mathematicalβ€”Finset.prod
Polynomial
Ring.toSemiring
CommRing.toRing
CommRing.toCommMonoid
commRing
Nat.divisors
cyclotomic
instSub
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
instOne
β€”map_injective
Int.cast_injective
Complex.instCharZero
instIsDomain
map_prod
Finset.prod_congr
map_sub
map_pow
map_X
map_one
prod_cyclotomic'_eq_X_pow_sub_one
Nat.instAtLeastTwoHAddOfNat
Complex.isPrimitiveRoot_exp
LT.lt.ne'
map_cyclotomic_int
prod_cyclotomic_eq_geom_sum πŸ“–mathematicalβ€”Finset.prod
Polynomial
Ring.toSemiring
CommRing.toRing
CommRing.toCommMonoid
commRing
Finset.erase
Nat.divisors
cyclotomic
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.range
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
β€”mul_left_inj'
instIsRightCancelMulZeroOfIsCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
IsCancelMulZero.toIsRightCancelMulZero
Int.instIsCancelMulZero
cyclotomic_ne_zero
Int.instNontrivial
Finset.prod_erase_mul
Nat.one_mem_divisors
LT.lt.ne'
cyclotomic_one
geom_sum_mul
prod_cyclotomic_eq_X_pow_sub_one
map_prod
Finset.prod_congr
map_cyclotomic_int
map_sum
Finset.sum_congr
map_pow
map_X
roots_of_cyclotomic πŸ“–mathematicalβ€”roots
cyclotomic'
Finset.val
primitiveRoots
β€”cyclotomic'.eq_1
roots_prod_X_sub_C
separable_cyclotomic πŸ“–mathematicalβ€”Separable
Semifield.toCommSemiring
Field.toSemifield
cyclotomic
DivisionRing.toRing
Field.toDivisionRing
β€”Separable.of_dvd
separable_X_pow_sub_C
one_ne_zero
NeZero.one
IsLocalRing.toNontrivial
Field.instIsLocalRing
cyclotomic.dvd_X_pow_sub_one
squarefree_cyclotomic πŸ“–mathematicalβ€”Squarefree
Polynomial
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
cyclotomic
β€”Separable.squarefree
separable_cyclotomic
unique_int_coeff_of_cycl πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
PNat.val
ExistsUnique
Polynomial
Int.instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
map
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
cyclotomic'
β€”int_coeff_of_cyclotomic'
map_injective
Int.cast_injective

Polynomial.cyclotomic

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_X_pow_sub_one πŸ“–mathematicalβ€”Polynomial
Ring.toSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Semiring.toNonUnitalSemiring
Polynomial.semiring
Polynomial.cyclotomic
Polynomial.instSub
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.X
Polynomial.instOne
β€”Polynomial.cyclotomic_zero
pow_zero
sub_self
Polynomial.prod_cyclotomic_eq_X_pow_sub_one
Finset.dvd_prod_of_mem
Nat.mem_divisors_self
LT.lt.ne'
Polynomial.map_cyclotomic_int
Polynomial.map_sub
Polynomial.map_pow
Polynomial.map_X
Polynomial.map_one
Polynomial.map_dvd
eval_apply πŸ“–mathematicalβ€”Polynomial.eval
Ring.toSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.cyclotomic
β€”Polynomial.map_cyclotomic
Polynomial.eval_map
Polynomial.evalβ‚‚_at_apply
eval_apply_ofReal πŸ“–mathematicalβ€”Polynomial.eval
Complex
Ring.toSemiring
Complex.instRing
Complex.ofReal
Polynomial.cyclotomic
Real
Real.instRing
β€”eval_apply
isPrimitive πŸ“–mathematicalβ€”Polynomial.IsPrimitive
CommRing.toCommSemiring
Polynomial.cyclotomic
CommRing.toRing
β€”Polynomial.Monic.isPrimitive
monic
monic πŸ“–mathematicalβ€”Polynomial.Monic
Ring.toSemiring
Polynomial.cyclotomic
β€”Polynomial.map_cyclotomic_int
Polynomial.Monic.map
instIsDomain
Polynomial.int_cyclotomic_spec

Polynomial.cyclotomic'

Theorems

NameKindAssumesProvesValidatesDepends On
monic πŸ“–mathematicalβ€”Polynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.cyclotomic'
β€”Polynomial.monic_prod_of_monic
Polynomial.monic_X_sub_C

---

← Back to Index