Documentation Verification Report

Eval

๐Ÿ“ Source: Mathlib/RingTheory/Polynomial/Cyclotomic/Eval.lean

Statistics

MetricCount
Definitions0
Theoremscyclotomic_eval_le_add_one_pow_totient, cyclotomic_eval_lt_add_one_pow_totient, cyclotomic_nonneg, cyclotomic_pos, cyclotomic_pos', cyclotomic_pos_and_nonneg, eval_one_cyclotomic_not_prime_pow, eval_one_cyclotomic_prime, eval_one_cyclotomic_prime_pow, evalโ‚‚_one_cyclotomic_prime, evalโ‚‚_one_cyclotomic_prime_pow, sub_one_lt_natAbs_cyclotomic_eval, sub_one_pow_totient_le_cyclotomic_eval, sub_one_pow_totient_lt_cyclotomic_eval, sub_one_pow_totient_lt_natAbs_cyclotomic_eval
15
Total15

Polynomial

Theorems

NameKindAssumesProvesValidatesDepends On
cyclotomic_eval_le_add_one_pow_totient ๐Ÿ“–mathematicalReal
Real.instLT
Real.instOne
Real.instLE
eval
Ring.toSemiring
Real.instRing
cyclotomic
Monoid.toNatPow
Real.instMonoid
Real.instAdd
Nat.totient
โ€”cyclotomic_zero
eval_one
pow_zero
cyclotomic_one
eval_sub
eval_X
pow_one
AddGroup.toOrderedSub
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
add_assoc
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Real.instZeroLEOneClass
cyclotomic_two
eval_add
Nat.totient_two
LT.lt.le
cyclotomic_eval_lt_add_one_pow_totient
le_add_self
Nat.instCanonicallyOrderedAdd
cyclotomic_eval_lt_add_one_pow_totient ๐Ÿ“–mathematicalReal
Real.instLT
Real.instOne
eval
Ring.toSemiring
Real.instRing
cyclotomic
Monoid.toNatPow
Real.instMonoid
Real.instAdd
Nat.totient
โ€”pos_of_gt
Nat.instCanonicallyOrderedAdd
LT.lt.trans
zero_lt_one
Real.instZeroLEOneClass
NeZero.one
Real.instNontrivial
instIsDomain
Complex.norm_real
Real.norm_of_nonneg
LT.lt.le
LE.le.trans_lt
zero_le_one
IsPrimitiveRoot.norm'_eq_one
mem_primitiveRoots
LT.lt.ne'
norm_sub_le
Nat.instAtLeastTwoHAddOfNat
Complex.isPrimitiveRoot_exp
Real.instIsStrictOrderedRing
Complex.sameRay_iff
Nat.cast_zero
neg_ne_zero
IsPrimitiveRoot.ne_zero
Complex.instNontrivial
Complex.arg_ofReal_of_nonneg
IsPrimitiveRoot.unique
IsPrimitiveRoot.zero
neg_eq_zero
Complex.neg_im
neg_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Complex.neg_re
Complex.arg_eq_zero_iff
LE.le.lt_of_ne
Mathlib.Tactic.Contrapose.contraposeโ‚„
Complex.ext
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
IsStrictOrderedRing.toIsOrderedRing
sub_eq_zero_of_eq
IsPrimitiveRoot.arg_eq_pi_iff
Complex.arg_eq_pi_iff
IsPrimitiveRoot.neg_one
CharP.ofCharZero
Complex.instCharZero
two_ne_zero
abs_eq_self
norm_neg
norm_add_lt_of_not_sameRay
UniformConvexSpace.toStrictConvexSpace
InnerProductSpace.toUniformConvexSpace
cyclotomic.eval_apply_ofReal
LT.lt.ne
cyclotomic_pos'
Complex.nnnorm_real
lt_of_not_ge
Mathlib.Tactic.Ring.mul_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_one
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Meta.NormNum.isNat_lt_true
Real.instIsOrderedRing
RCLike.charZero_rclike
Mathlib.Tactic.Linarith.sub_neg_of_lt
cyclotomic_eq_prod_X_sub_primitiveRoots
eval_prod
Finset.prod_congr
eval_sub
eval_X
eval_C
nnnorm_prod
NormedDivisionRing.toNormMulClass
NormedDivisionRing.to_normOneClass
Finset.prod_eq_zero
add_pos'
lt_trans
Mathlib.Meta.Positivity.pos_of_isNat
Finset.prod_const
Finset.card_attach
Complex.card_primitiveRoots
Finset.prod_lt_prod'
IsOrderedMonoid.toIsOrderedCancelMonoid
Units.isOrderedMonoid
LinearOrderedCommMonoidWithZero.toIsOrderedMonoid
Units.val_mk0
cyclotomic_nonneg
max_eq_left_iff
le_of_not_gt
cyclotomic_nonneg ๐Ÿ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
eval
Ring.toSemiring
cyclotomic
โ€”cyclotomic_pos_and_nonneg
cyclotomic_pos ๐Ÿ“–mathematicalโ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
eval
Ring.toSemiring
CommRing.toRing
cyclotomic
โ€”Nat.strong_induction_on
pos_of_gt
Nat.instCanonicallyOrderedAdd
LT.lt.trans
Nat.instAtLeastTwoHAddOfNat
one_lt_two
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
prod_cyclotomic_eq_geom_sum
lt_trichotomy
pos_of_mul_pos_left
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
eval_geom_sum
eval_mul
Nat.self_notMem_properDivisors
Finset.erase_subset
Finset.prod_cons
Finset.erase_cons_of_ne
LT.lt.ne'
Nat.cons_self_properDivisors
eval_prod
Finset.prod_nonneg
IsStrictOrderedRing.toZeroLEOneClass
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
geom_sum_pos_iff
LT.lt.le
Nat.two_lt_of_ne
zero_dvd_iff
Nat.not_odd_iff_even
even_iff_two_dvd
eq_or_ne
cyclotomic_two
eval_add
eval_X
eval_one
geom_sum_eq_zero_iff_neg_one
pos_of_mul_neg_left
AddGroup.existsAddOfLE
IsOrderedRing.toMulPosMono
covariant_swap_add_of_covariant_add
IsOrderedRing.toIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Finset.mem_erase
Nat.mem_properDivisors
geom_sum_neg_iff
Finset.prod_erase_mul
mul_nonpos_of_nonneg_of_nonpos
le_of_lt
cyclotomic_pos' ๐Ÿ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
eval
Ring.toSemiring
cyclotomic
โ€”cyclotomic_pos_and_nonneg
cyclotomic_pos_and_nonneg ๐Ÿ“–mathematicalโ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
eval
Ring.toSemiring
CommRing.toRing
cyclotomic
Preorder.toLE
โ€”cyclotomic_zero
eval_one
IsStrictOrderedRing.toZeroLEOneClass
NeZero.one
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
zero_add
cyclotomic_one
eval_sub
eval_X
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
cyclotomic_two
eval_add
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.neg_congr
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.mul_neg
neg_neg_of_pos
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Tactic.Linarith.sub_nonpos_of_le
le_of_not_gt
cyclotomic_pos
le_of_lt
eval_one_cyclotomic_not_prime_pow ๐Ÿ“–mathematicalโ€”eval
Ring.toSemiring
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
cyclotomic
โ€”cyclotomic_zero
eval_one
LT.lt.ne'
Nat.prime_two
Nat.eq_one_iff_not_exists_prime_dvd
prod_cyclotomic_eq_geom_sum
mul_assoc
mul_comm
mul_left_comm
Finset.prod_singleton
Finset.prod_sdiff
Finset.card_range
Finset.prod_const
Finset.prod_congr
eval_one_cyclotomic_prime_pow
Finset.prod_image
Nat.succ_injective
Nat.pow_right_injective
Nat.Prime.two_le
range_pow_padicValNat_subset_divisors'
eval_prod
one_geom_sum
eval_geom_sum
pow_succ_padicValNat_not_dvd
eval_intCast_map
Int.cast_one
map_cyclotomic
eq_intCast
RingHom.instRingHomClass
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
sub_eq_zero_of_eq
Mathlib.Tactic.Linarith.sub_nonpos_of_le
IsStrictOrderedRing.toIsOrderedRing
cyclotomic_nonneg
le_refl
eval_one_cyclotomic_prime ๐Ÿ“–mathematicalโ€”eval
Ring.toSemiring
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
cyclotomic
AddMonoidWithOne.toNatCast
โ€”cyclotomic_prime
eval_finset_sum
Finset.sum_congr
eval_pow
eval_X
one_pow
Finset.sum_const
Finset.card_range
Nat.smul_one_eq_cast
eval_one_cyclotomic_prime_pow ๐Ÿ“–mathematicalโ€”eval
Ring.toSemiring
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
cyclotomic
Monoid.toNatPow
Nat.instMonoid
AddMonoidWithOne.toNatCast
โ€”cyclotomic_prime_pow_eq_geom_sum
Fact.out
eval_finset_sum
Finset.sum_congr
eval_pow
eval_X
one_pow
Finset.sum_const
Finset.card_range
Nat.smul_one_eq_cast
evalโ‚‚_one_cyclotomic_prime ๐Ÿ“–mathematicalโ€”evalโ‚‚
CommSemiring.toSemiring
CommRing.toCommSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
cyclotomic
CommRing.toRing
AddMonoidWithOne.toNatCast
โ€”evalโ‚‚_at_one
eval_one_cyclotomic_prime
map_natCast
RingHom.instRingHomClass
evalโ‚‚_one_cyclotomic_prime_pow ๐Ÿ“–mathematicalโ€”evalโ‚‚
CommSemiring.toSemiring
CommRing.toCommSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
cyclotomic
Monoid.toNatPow
Nat.instMonoid
CommRing.toRing
AddMonoidWithOne.toNatCast
โ€”evalโ‚‚_at_one
eval_one_cyclotomic_prime_pow
map_natCast
RingHom.instRingHomClass
sub_one_lt_natAbs_cyclotomic_eval ๐Ÿ“–mathematicalโ€”eval
Ring.toSemiring
Int.instRing
cyclotomic
โ€”LT.lt.ne'
Nat.totient_pos
pos_of_gt
Nat.instCanonicallyOrderedAdd
sub_one_pow_totient_lt_natAbs_cyclotomic_eval
sub_one_pow_totient_le_cyclotomic_eval ๐Ÿ“–mathematicalReal
Real.instLT
Real.instOne
Real.instLE
Monoid.toNatPow
Real.instMonoid
Real.instSub
Nat.totient
eval
Ring.toSemiring
Real.instRing
cyclotomic
โ€”pow_zero
cyclotomic_zero
eval_one
pow_one
cyclotomic_one
eval_sub
eval_X
LT.lt.le
sub_one_pow_totient_lt_cyclotomic_eval
le_add_self
Nat.instCanonicallyOrderedAdd
sub_one_pow_totient_lt_cyclotomic_eval ๐Ÿ“–mathematicalReal
Real.instLT
Real.instOne
Monoid.toNatPow
Real.instMonoid
Real.instSub
Nat.totient
eval
Ring.toSemiring
Real.instRing
cyclotomic
โ€”pos_of_gt
Nat.instCanonicallyOrderedAdd
LT.lt.trans
zero_lt_one
Real.instZeroLEOneClass
NeZero.one
Real.instNontrivial
instIsDomain
Complex.norm_real
Real.norm_of_nonneg
LT.lt.le
IsPrimitiveRoot.norm'_eq_one
mem_primitiveRoots
LT.lt.ne'
norm_sub_norm_le
Nat.instAtLeastTwoHAddOfNat
Complex.isPrimitiveRoot_exp
Real.instIsStrictOrderedRing
Complex.sameRay_iff
Nat.cast_zero
IsPrimitiveRoot.ne_zero
Complex.instNontrivial
Complex.arg_ofReal_of_nonneg
IsPrimitiveRoot.arg_eq_zero_iff
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
IsStrictOrderedRing.toIsOrderedRing
sub_eq_zero_of_eq
Nat.cast_one
IsPrimitiveRoot.unique
IsPrimitiveRoot.one
lt_norm_sub_of_not_sameRay
UniformConvexSpace.toStrictConvexSpace
InnerProductSpace.toUniformConvexSpace
cyclotomic.eval_apply_ofReal
cyclotomic_pos'
AddGroup.toOrderedSub
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
zero_add
Complex.nnnorm_real
cyclotomic_eq_prod_X_sub_primitiveRoots
eval_prod
Finset.prod_congr
eval_sub
eval_X
eval_C
nnnorm_prod
NormedDivisionRing.toNormMulClass
NormedDivisionRing.to_normOneClass
Finset.prod_eq_zero
Finset.prod_const
Finset.card_attach
Complex.card_primitiveRoots
Finset.prod_lt_prod'
IsOrderedMonoid.toIsOrderedCancelMonoid
Units.isOrderedMonoid
LinearOrderedCommMonoidWithZero.toIsOrderedMonoid
Units.val_mk0
sup_of_le_left
cyclotomic_nonneg
sub_one_pow_totient_lt_natAbs_cyclotomic_eval ๐Ÿ“–mathematicalโ€”Monoid.toNatPow
Nat.instMonoid
Nat.totient
eval
Ring.toSemiring
Int.instRing
cyclotomic
โ€”Ne.lt_or_gt
zero_tsub
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
zero_pow
LT.lt.ne'
Nat.totient_pos
pos_of_gt
pos_iff_ne_zero
Nat.cast_zero
coeff_zero_eq_eval_zero
cyclotomic_coeff_zero
one_ne_zero
Nat.cast_lt
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
Nat.cast_pow
Nat.cast_sub
LT.lt.le
Nat.cast_one
Nat.cast_natAbs
LT.lt.trans_le
sub_one_pow_totient_lt_cyclotomic_eval
Nat.one_lt_cast
Int.cast_abs
Real.instIsStrictOrderedRing
eq_intCast
RingHom.instRingHomClass
Eq.trans_le
cyclotomic.eval_apply
le_abs_self

---

โ† Back to Index