Documentation Verification Report

Factorization

πŸ“ Source: Mathlib/RingTheory/Polynomial/Cyclotomic/Factorization.lean

Statistics

MetricCount
Definitions0
Theoremsirreducible_of_dvd_cyclotomic_of_natDegree, natDegree_of_dvd_cyclotomic_of_irreducible, natDegree_of_mem_normalizedFactors_cyclotomic, normalizedFactors_cyclotomic_card, irreducible_of_dvd_cyclotomic_of_natDegree
5
Total5

Polynomial

Theorems

NameKindAssumesProvesValidatesDepends On
irreducible_of_dvd_cyclotomic_of_natDegree πŸ“–mathematicalFintype.card
Monoid.toNatPow
Nat.instMonoid
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
cyclotomic
DivisionRing.toRing
Field.toDivisionRing
natDegree
orderOf
Units
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.commRing
Units.instMonoid
ZMod.unitOfCoprime
Irreducible
semiring
β€”ne_zero_of_dvd_ne_zero
cyclotomic_ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsDomain.to_noZeroDivisors
instIsDomain
uniqueFactorizationMonoid
PrincipalIdealRing.to_uniqueFactorizationMonoid
instIsPrincipalIdealRingOfIsSemisimpleRing
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
UniqueFactorizationMonoid.exists_mem_normalizedFactors
not_isUnit_of_natDegree_pos
pos_of_ne_zero
Nat.instCanonicallyOrderedAdd
orderOf_eq_zero_iff
isOfFinOrder_of_finite
instFiniteZModUnits
Associated.irreducible
associated_of_dvd_of_natDegree_le
UniqueFactorizationMonoid.dvd_of_mem_normalizedFactors
natDegree_of_dvd_cyclotomic_of_irreducible
Multiset.mem_of_le
UniqueFactorizationMonoid.dvd_iff_normalizedFactors_le_normalizedFactors
UniqueFactorizationMonoid.irreducible_of_normalized_factor
le_refl
natDegree_of_dvd_cyclotomic_of_irreducible πŸ“–mathematicalFintype.card
Monoid.toNatPow
Nat.instMonoid
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
cyclotomic
DivisionRing.toRing
Field.toDivisionRing
Irreducible
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
natDegree
orderOf
Units
ZMod
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.commRing
Units.instMonoid
ZMod.unitOfCoprime
β€”inv_mul_cancelβ‚€
leadingCoeff_ne_zero
Irreducible.ne_zero
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
mul_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
natDegree_mul_leadingCoeff_self_inv
irreducible_mul_leadingCoeff_inv
monic_mul_leadingCoeff_inv
natDegree_of_mem_normalizedFactors_cyclotomic πŸ“–mathematicalFintype.card
Monoid.toNatPow
Nat.instMonoid
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Multiset
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
Multiset.instMembership
UniqueFactorizationMonoid.normalizedFactors
CommSemiring.toCommMonoidWithZero
commSemiring
Semifield.toCommSemiring
instNormalizationMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsDomain.to_noZeroDivisors
instIsDomain
NormalizedGCDMonoid.toNormalizationMonoid
CommRing.toCommSemiring
CommGroupWithZero.instNormalizedGCDMonoid
Semifield.toCommGroupWithZero
uniqueFactorizationMonoid
PrincipalIdealRing.to_uniqueFactorizationMonoid
instIsPrincipalIdealRingOfIsSemisimpleRing
instIsSemisimpleModuleOfIsSimpleModule
Ring.toAddCommGroup
Semiring.toModule
instIsSimpleModule
cyclotomic
natDegree
orderOf
Units
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
ZMod.commRing
Units.instMonoid
ZMod.unitOfCoprime
β€”IsDomain.to_noZeroDivisors
instIsDomain
uniqueFactorizationMonoid
PrincipalIdealRing.to_uniqueFactorizationMonoid
instIsPrincipalIdealRingOfIsSemisimpleRing
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
natDegree_of_dvd_cyclotomic_of_irreducible
UniqueFactorizationMonoid.dvd_of_mem_normalizedFactors
UniqueFactorizationMonoid.irreducible_of_normalized_factor
normalizedFactors_cyclotomic_card πŸ“–mathematicalFintype.card
Monoid.toNatPow
Nat.instMonoid
Finset.card
Polynomial
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
Multiset.toFinset
instDecidableEq
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
UniqueFactorizationMonoid.normalizedFactors
CommSemiring.toCommMonoidWithZero
commSemiring
Semifield.toCommSemiring
instNormalizationMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsDomain.to_noZeroDivisors
instIsDomain
NormalizedGCDMonoid.toNormalizationMonoid
CommRing.toCommSemiring
CommGroupWithZero.instNormalizedGCDMonoid
Semifield.toCommGroupWithZero
uniqueFactorizationMonoid
PrincipalIdealRing.to_uniqueFactorizationMonoid
instIsPrincipalIdealRingOfIsSemisimpleRing
instIsSemisimpleModuleOfIsSimpleModule
Ring.toAddCommGroup
Semiring.toModule
instIsSimpleModule
cyclotomic
Nat.totient
orderOf
Units
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
ZMod.commRing
Units.instMonoid
ZMod.unitOfCoprime
β€”IsDomain.to_noZeroDivisors
instIsDomain
uniqueFactorizationMonoid
PrincipalIdealRing.to_uniqueFactorizationMonoid
instIsPrincipalIdealRingOfIsSemisimpleRing
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
UniqueFactorizationMonoid.prod_normalizedFactors
cyclotomic_ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
natDegree_of_mem_normalizedFactors_cyclotomic
natDegree_eq_of_degree_eq
degree_eq_degree_of_associated
Multiset.map_const'
Multiset.sum_replicate
Multiset.map_congr
natDegree_multiset_prod
UniqueFactorizationMonoid.zero_notMem_normalizedFactors
natDegree_cyclotomic
orderOf_pos
instFiniteZModUnits
Multiset.toFinset_card_of_nodup
Multiset.nodup_iff_count_le_one
charP_of_card_eq_prime_pow
Nat.Prime.coprime_iff_not_dvd
Fact.out
Nat.coprime_pow_left_iff
pos_of_ne_zero
Nat.instCanonicallyOrderedAdd
CharP.cast_eq_zero_iff
Multiset.count_pos
Prime.not_unit
UniqueFactorizationMonoid.prime_of_normalized_factor
squarefree_cyclotomic
Multiset.le_iff_count
Multiset.count.congr_simp
Multiset.count_cons_self
Multiset.count_eq_one_of_mem
Multiset.count_eq_zero_of_notMem
Multiset.prod_dvd_prod_of_le
Dvd.dvd.trans
Multiset.prod_cons
Multiset.prod_singleton
Associated.dvd

ZMod

Theorems

NameKindAssumesProvesValidatesDepends On
irreducible_of_dvd_cyclotomic_of_natDegree πŸ“–mathematicalPolynomial
ZMod
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
commRing
Polynomial.cyclotomic
DivisionRing.toRing
Field.toDivisionRing
Polynomial.natDegree
orderOf
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Units.instMonoid
unitOfCoprime
Nat.Prime.coprime_iff_not_dvd
Fact.out
Nat.Prime
Irreducible
Polynomial.semiring
β€”Nat.Prime.coprime_iff_not_dvd
Fact.out
Polynomial.irreducible_of_dvd_cyclotomic_of_natDegree
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
card
pow_one
unitOfCoprime.congr_simp

---

← Back to Index