Documentation Verification Report

Roots

πŸ“ Source: Mathlib/RingTheory/Polynomial/Cyclotomic/Roots.lean

Statistics

MetricCount
Definitions0
TheoremsisRoot_cyclotomic, minpoly_dvd_cyclotomic, minpoly_eq_cyclotomic_of_irreducible, sum_eq_zero_iff_forall_eq, sum_eq_zero_iff_forall_eq_int, irreducible, irreducible_rat, isCoprime_rat, roots_eq_primitiveRoots_val, roots_to_finset_eq_primitiveRoots, cyclotomic_eq_minpoly, cyclotomic_eq_minpoly_rat, cyclotomic_injective, isRoot_cyclotomic_iff, isRoot_cyclotomic_iff_charZero, isRoot_of_unity_of_root_cyclotomic, roots_cyclotomic_nodup, isRoot_of_unity_iff
18
Total18

IsPrimitiveRoot

Theorems

NameKindAssumesProvesValidatesDepends On
isRoot_cyclotomic πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Polynomial.IsRoot
Ring.toSemiring
CommRing.toRing
Polynomial.cyclotomic
β€”Polynomial.mem_roots
Polynomial.cyclotomic_ne_zero
IsDomain.toNontrivial
Polynomial.cyclotomic_eq_prod_X_sub_primitiveRoots
Polynomial.roots_prod_X_sub_C
Finset.mem_def
mem_primitiveRoots
minpoly_dvd_cyclotomic πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Int.instCommRing
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
minpoly
DivisionRing.toRing
Field.toDivisionRing
Ring.toIntAlgebra
Polynomial.cyclotomic
Int.instRing
β€”minpoly.isIntegrallyClosed_dvd
Int.instIsDomain
IsDedekindRing.toIsIntegralClosure
IsDedekindDomain.toIsDedekindRing
IsPrincipalIdealRing.isDedekindDomain
EuclideanDomain.to_principal_ideal_domain
instIsDomain
instIsTorsionFreeIntOfIsAddTorsionFree
IsAddTorsionFree.of_isCancelMulZero_charZero
IsDomain.toIsCancelMulZero
isIntegral
Polynomial.evalβ‚‚_eq_eval_map
Polynomial.map_cyclotomic
isRoot_cyclotomic
minpoly_eq_cyclotomic_of_irreducible πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Irreducible
Polynomial
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.cyclotomic
minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
β€”minpoly.eq_of_irreducible_of_monic
IsDomain.toNontrivial
Polynomial.aeval_def
Polynomial.evalβ‚‚_eq_eval_map
Polynomial.map_cyclotomic
Polynomial.IsRoot.def
Polynomial.isRoot_cyclotomic_iff
NeZero.of_faithfulSMul
IsScalarTower.right
instFaithfulSMul_1
DivisionRing.isSimpleRing
Polynomial.cyclotomic.monic
sum_eq_zero_iff_forall_eq πŸ“–mathematicalNat.Prime
IsPrimitiveRoot
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.univ
Fin.fintype
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
DivisionRing.toRatCast
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”Polynomial.finset_sum_coeff
Finset.sum_congr
Polynomial.coeff_C_mul
Polynomial.coeff_X_pow
mul_ite
mul_one
MulZeroClass.mul_zero
Finset.sum_ite_eq
LE.le.trans
Polynomial.degree_sum_le
Finset.sup_le
le_imp_le_of_le_of_le
Polynomial.degree_C_mul_X_pow_le
le_refl
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
WithBot.charZero
Nat.instCharZero
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
Polynomial.aeval_C
eq_ratCast
RingHom.instRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
Polynomial.aeval_X
minpoly.dvd_iff
Polynomial.cyclotomic_eq_minpoly_rat
Nat.Prime.pos
WithBot.add_le_add_iff_left
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
add_zero
Nat.totient_prime
Polynomial.degree_cyclotomic
Rat.nontrivial
Polynomial.degree_mul
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
Polynomial.natDegree_eq_zero
Polynomial.natDegree_eq_zero_iff_degree_le_zero
Polynomial.cyclotomic_prime
Polynomial.coeff_mul_C
one_mul
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
Polynomial.ext
CanLift.prf
Fin.instCanLiftNatValLt
Finset.sum_eq_zero
instIsEmptyFalse
MulZeroClass.zero_mul
sum_eq_zero_iff_forall_eq_int πŸ“–mathematicalNat.Prime
IsPrimitiveRoot
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.univ
Fin.fintype
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”Finset.sum_congr
Rat.cast_intCast
Rat.instCharZero
sum_eq_zero_iff_forall_eq

Polynomial

Theorems

NameKindAssumesProvesValidatesDepends On
cyclotomic_eq_minpoly πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
cyclotomic
Int.instRing
minpoly
Int.instCommRing
DivisionRing.toRing
Field.toDivisionRing
Ring.toIntAlgebra
β€”eq_of_monic_of_dvd_of_natDegree_le
minpoly.monic
IsPrimitiveRoot.isIntegral
cyclotomic.monic
IsPrimitiveRoot.minpoly_dvd_cyclotomic
natDegree_cyclotomic
Int.instNontrivial
IsPrimitiveRoot.totient_le_degree_minpoly
instIsDomain
cyclotomic_eq_minpoly_rat πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
cyclotomic
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
minpoly
Rat.commRing
DivisionRing.toRing
Field.toDivisionRing
DivisionRing.toRatAlgebra
β€”map_cyclotomic_int
cyclotomic_eq_minpoly
minpoly.isIntegrallyClosed_eq_field_fractions'
Int.instIsDomain
Rat.isFractionRing
IsDedekindRing.toIsIntegralClosure
IsDedekindDomain.toIsDedekindRing
IsPrincipalIdealRing.isDedekindDomain
EuclideanDomain.to_principal_ideal_domain
instIsDomain
AddCommGroup.intIsScalarTower
IsPrimitiveRoot.isIntegral
cyclotomic_injective πŸ“–mathematicalβ€”Polynomial
Ring.toSemiring
CommRing.toRing
cyclotomic
β€”eq_or_ne
cyclotomic_zero
Nat.totient_eq_zero
natDegree_cyclotomic
instNontrivialOfCharZero
natDegree_one
map_injective
Int.cast_injective
map_cyclotomic_int
Nat.instAtLeastTwoHAddOfNat
Complex.isPrimitiveRoot_exp
isRoot_cyclotomic_iff
instIsDomain
NeZero.charZero
Complex.instCharZero
IsPrimitiveRoot.eq_orderOf
eval_one
NeZero.one
Complex.instNontrivial
isRoot_cyclotomic_iff πŸ“–mathematicalβ€”IsRoot
Ring.toSemiring
CommRing.toRing
cyclotomic
IsPrimitiveRoot
CommRing.toCommMonoid
β€”IsFractionRing.injective
Localization.isLocalization
isRoot_map_iff
IsPrimitiveRoot.map_iff_of_injective
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_cyclotomic
NeZero.nat_of_injective
isRoot_cyclotomic_iff_charZero πŸ“–mathematicalβ€”IsRoot
Ring.toSemiring
CommRing.toRing
cyclotomic
IsPrimitiveRoot
CommRing.toCommMonoid
β€”isRoot_cyclotomic_iff
NeZero.charZero
NeZero.of_gt
Nat.instCanonicallyOrderedAdd
isRoot_of_unity_of_root_cyclotomic πŸ“–mathematicalFinset
Finset.instMembership
Nat.divisors
IsRoot
Ring.toSemiring
CommRing.toRing
cyclotomic
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”pow_zero
prod_cyclotomic_eq_X_pow_sub_one
eval_eq_zero_of_dvd_of_eval_eq_zero
Finset.dvd_prod_of_mem
add_zero
eq_add_of_sub_eq'
eval_one
eval_X_pow
eval_sub
roots_cyclotomic_nodup πŸ“–mathematicalβ€”Multiset.Nodup
roots
cyclotomic
CommRing.toRing
β€”Multiset.empty_or_exists_mem
Multiset.nodup_zero
Multiset.nodup_of_le
roots.le_of_dvd
X_pow_sub_C_ne_zero
IsDomain.toNontrivial
NeZero.pos_of_neZero_natCast
cyclotomic.dvd_X_pow_sub_one
IsPrimitiveRoot.nthRoots_one_nodup
isRoot_cyclotomic_iff
mem_roots
cyclotomic_ne_zero

Polynomial.cyclotomic

Theorems

NameKindAssumesProvesValidatesDepends On
irreducible πŸ“–mathematicalβ€”Irreducible
Polynomial
Ring.toSemiring
Int.instRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.cyclotomic
β€”Nat.instAtLeastTwoHAddOfNat
Polynomial.cyclotomic_eq_minpoly
Complex.isPrimitiveRoot_exp
LT.lt.ne'
Complex.instCharZero
minpoly.irreducible
Int.instIsDomain
instIsDomain
IsPrimitiveRoot.isIntegral
irreducible_rat πŸ“–mathematicalβ€”Irreducible
Polynomial
Ring.toSemiring
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.cyclotomic
β€”Polynomial.map_cyclotomic_int
Polynomial.IsPrimitive.irreducible_iff_irreducible_map_fraction_map
Rat.isFractionRing
Int.instIsDomain
instNonemptyNormalizedGCDMonoidOfUniqueFactorizationMonoid
PrincipalIdealRing.to_uniqueFactorizationMonoid
EuclideanDomain.to_principal_ideal_domain
isPrimitive
irreducible
isCoprime_rat πŸ“–mathematicalβ€”IsCoprime
Polynomial
Ring.toSemiring
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
Polynomial.commSemiring
Rat.commSemiring
Polynomial.cyclotomic
β€”isCoprime_one_left
isCoprime_one_right
Irreducible.coprime_iff_not_dvd
IsBezout.of_isPrincipalIdealRing
EuclideanDomain.to_principal_ideal_domain
irreducible_rat
Polynomial.cyclotomic_injective
Rat.instCharZero
Polynomial.eq_of_monic_of_associated
monic
Irreducible.associated_of_dvd
roots_eq_primitiveRoots_val πŸ“–mathematicalβ€”Polynomial.roots
Polynomial.cyclotomic
CommRing.toRing
Finset.val
primitiveRoots
β€”Polynomial.roots_cyclotomic_nodup
roots_to_finset_eq_primitiveRoots
roots_to_finset_eq_primitiveRoots πŸ“–mathematicalβ€”Polynomial.roots
Polynomial.cyclotomic
CommRing.toRing
Polynomial.roots_cyclotomic_nodup
primitiveRoots
β€”Finset.ext
Polynomial.roots_cyclotomic_nodup
Polynomial.cyclotomic_ne_zero
IsDomain.toNontrivial
NeZero.pos_of_neZero_natCast

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
isRoot_of_unity_iff πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Finset
Finset.instMembership
Nat.divisors
Polynomial.IsRoot
Ring.toSemiring
Polynomial.cyclotomic
β€”Polynomial.mem_nthRoots
Polynomial.nthRoots.eq_1
Polynomial.mem_roots
Polynomial.X_pow_sub_C_ne_zero
IsDomain.toNontrivial
Polynomial.C_1
Polynomial.prod_cyclotomic_eq_X_pow_sub_one
Polynomial.isRoot_prod

---

← Back to Index