Documentation Verification Report

Dickson

πŸ“ Source: Mathlib/RingTheory/Polynomial/Dickson.lean

Statistics

MetricCount
Definitionsdickson
1
Theoremschebyshev_T_eq_dickson_one_one, chebyshev_U_eq_dickson_two_one, dickson_add_two, dickson_of_two_le, dickson_one, dickson_one_one_charP, dickson_one_one_comp_comm, dickson_one_one_eq_chebyshev_C, dickson_one_one_eq_chebyshev_T, dickson_one_one_eval_add_inv, dickson_one_one_mul, dickson_one_one_zmod_p, dickson_two, dickson_two_one_eq_chebyshev_S, dickson_two_one_eq_chebyshev_U, dickson_two_zero, dickson_zero, map_dickson
18
Total19

Polynomial

Definitions

NameCategoryTheorems
dickson πŸ“–CompOp
18 mathmath: map_dickson, dickson_one_one_mul, dickson_two_one_eq_chebyshev_S, dickson_two_zero, chebyshev_U_eq_dickson_two_one, dickson_one_one_eq_chebyshev_C, dickson_one_one_comp_comm, dickson_add_two, dickson_one_one_charP, dickson_one_one_zmod_p, dickson_one_one_eq_chebyshev_T, chebyshev_T_eq_dickson_one_one, dickson_of_two_le, dickson_zero, dickson_two_one_eq_chebyshev_U, dickson_two, dickson_one_one_eval_add_inv, dickson_one

Theorems

NameKindAssumesProvesValidatesDepends On
chebyshev_T_eq_dickson_one_one πŸ“–mathematicalβ€”Chebyshev.T
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Invertible.invOf
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
Nat.instAtLeastTwoHAddOfNat
comp
dickson
instNatCast
X
β€”Nat.instAtLeastTwoHAddOfNat
Chebyshev.T_eq_half_mul_C_comp_two_mul_X
dickson_one_one_eq_chebyshev_C
chebyshev_U_eq_dickson_two_one πŸ“–mathematicalβ€”Chebyshev.U
comp
CommSemiring.toSemiring
CommRing.toCommSemiring
dickson
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Polynomial
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
X
β€”Nat.instAtLeastTwoHAddOfNat
Chebyshev.S_comp_two_mul_X
dickson_two_one_eq_chebyshev_S
dickson_add_two πŸ“–mathematicalβ€”dickson
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instSub
CommRing.toRing
instMul
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”dickson.eq_3
dickson_of_two_le πŸ“–mathematicalβ€”dickson
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instSub
CommRing.toRing
instMul
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”add_comm
dickson_add_two
dickson_one πŸ“–mathematicalβ€”dickson
X
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”β€”
dickson_one_one_charP πŸ“–mathematicalβ€”dickson
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
β€”dvd_refl
ZMod.cast_one'
map_dickson
dickson_one_one_zmod_p
map_pow
map_X
dickson_one_one_comp_comm πŸ“–mathematicalβ€”comp
CommSemiring.toSemiring
CommRing.toCommSemiring
dickson
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”dickson_one_one_mul
mul_comm
dickson_one_one_eq_chebyshev_C πŸ“–mathematicalβ€”dickson
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Chebyshev.C
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_sub
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.isNat_natCast
Chebyshev.C_zero
dickson_one
Nat.cast_one
Chebyshev.C_one
dickson_add_two
C_1
Nat.cast_add
Nat.cast_two
Chebyshev.C_add_two
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
dickson_one_one_eq_chebyshev_T πŸ“–mathematicalβ€”dickson
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
comp
Chebyshev.T
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Invertible.invOf
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toNatCast
X
β€”Nat.instAtLeastTwoHAddOfNat
dickson_one_one_eq_chebyshev_C
Chebyshev.C_eq_two_mul_T_comp_half_mul_X
dickson_one_one_eval_add_inv πŸ“–mathematicalDistrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
eval
CommSemiring.toSemiring
CommRing.toCommSemiring
Distrib.toAdd
dickson
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”Nat.instAtLeastTwoHAddOfNat
pow_zero
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_sub
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.isNat_natCast
eval_ofNat
Mathlib.Meta.NormNum.isNat_add
Nat.cast_one
eval_X
pow_one
dickson_add_two
eval_sub
eval_mul
eval_one
pow_succ'
mul_add
Distrib.leftDistribClass
add_mul
Distrib.rightDistribClass
mul_comm
one_mul
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_pos
dickson_one_one_mul πŸ“–mathematicalβ€”dickson
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
comp
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”eq_intCast
RingHom.instRingHomClass
Int.cast_one
map_dickson
map_injective
Int.cast_injective
Rat.instCharZero
Nat.instAtLeastTwoHAddOfNat
dickson_one_one_eq_chebyshev_T
Nat.cast_mul
Chebyshev.T_mul
two_mul
map_comp
evalβ‚‚_congr
comp_assoc
mul_comp
C_comp
X_comp
mul_assoc
one_mul
dickson_one_one_zmod_p πŸ“–mathematicalβ€”dickson
ZMod
ZMod.commRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
ZMod.instField
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
β€”RingHom.charP_iff_charP
FractionRing.instNontrivial
nontrivial
ZMod.nontrivial
Nat.Prime.one_lt'
ZMod.charP
instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
ZMod.instIsDomain
Infinite.of_injective
infinite
IsFractionRing.injective
Localization.isLocalization
map_injective
dvd_refl
RingHom.injective
DivisionRing.isSimpleRing
EuclideanDomain.toNontrivial
map_dickson
map_pow
map_X
eq_of_infinite_eval_eq
instIsDomain
Set.Infinite.mono
ZMod.cast_one'
eval_pow
eval_X
dickson_one_one_eval_add_inv
mul_inv_cancelβ‚€
add_pow_char
Set.infinite_univ_iff
Set.eq_univ_of_forall
inv_zero
one_ne_zero
NeZero.one
Set.Finite.biUnion
eval_zero
sq
eval_add
eval_sub
eval_mul
MulZeroClass.mul_zero
eval_C
sub_self
eval_one
zero_add
Set.ext
mem_roots
mul_left_inj'
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
sub_eq_zero
add_mul
Distrib.rightDistribClass
inv_mul_cancelβ‚€
eq_iff_eq_cancel_right
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Finset.finite_toSet
dickson_two πŸ“–mathematicalβ€”dickson
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instSub
CommRing.toRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
sq
dickson_two_one_eq_chebyshev_S πŸ“–mathematicalβ€”dickson
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Chebyshev.S
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_sub
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNat_natCast
Nat.cast_one
Chebyshev.S_zero
dickson_one
Chebyshev.S_one
dickson_add_two
C_1
Nat.cast_add
Nat.cast_two
Chebyshev.S_add_two
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
dickson_two_one_eq_chebyshev_U πŸ“–mathematicalβ€”dickson
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
comp
CommSemiring.toSemiring
CommRing.toCommSemiring
Chebyshev.U
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Invertible.invOf
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
Nat.instAtLeastTwoHAddOfNat
X
β€”Nat.instAtLeastTwoHAddOfNat
dickson_two_one_eq_chebyshev_S
Chebyshev.S_eq_U_comp_half_mul_X
dickson_two_zero πŸ“–mathematicalβ€”dickson
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
β€”Nat.instAtLeastTwoHAddOfNat
pow_zero
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_sub
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNat_natCast
Nat.cast_one
pow_one
dickson_add_two
C_0
MulZeroClass.zero_mul
sub_zero
pow_add
mul_comm
dickson_zero πŸ“–mathematicalβ€”dickson
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instSub
CommRing.toRing
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”β€”
map_dickson πŸ“–mathematicalβ€”map
CommSemiring.toSemiring
CommRing.toCommSemiring
dickson
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”Nat.instAtLeastTwoHAddOfNat
map_sub
map_natCast
map_ofNat
map_X
dickson_add_two
map_mul
map_C

---

← Back to Index