Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/Polynomial/Eisenstein/Basic.lean

Statistics

MetricCount
DefinitionsIsEisensteinAt, IsWeaklyEisensteinAt
2
Theoremscoeff_mem, irreducible, isWeaklyEisensteinAt, leading, mem, notMem, exists_mem_adjoin_mul_eq_pow_natDegree, exists_mem_adjoin_mul_eq_pow_natDegree_le, map, mem, mul, pow_natDegree_le_of_aeval_zero_of_monic_mem_map, pow_natDegree_le_of_root_of_monic_mem, isEisensteinAt_of_mem_of_notMem, leadingCoeff_notMem, dvd_pow_natDegree_of_aeval_eq_zero, dvd_pow_natDegree_of_evalβ‚‚_eq_zero, isEisensteinAt_iff, isWeaklyEisensteinAt_iff, isWeaklyEisensteinAt
20
Total22

Polynomial

Definitions

NameCategoryTheorems
IsEisensteinAt πŸ“–CompData
4 mathmath: isEisensteinAt_iff, cyclotomic_prime_pow_comp_X_add_one_isEisensteinAt, cyclotomic_comp_X_add_one_isEisensteinAt, Monic.isEisensteinAt_of_mem_of_notMem
IsWeaklyEisensteinAt πŸ“–CompData
4 mathmath: scaleRoots.isWeaklyEisensteinAt, IsEisensteinAt.isWeaklyEisensteinAt, isWeaklyEisensteinAt_iff, IsDistinguishedAt.toIsWeaklyEisensteinAt

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_pow_natDegree_of_aeval_eq_zero πŸ“–mathematicalMonic
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
AlgHom
Polynomial
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
natDegree
β€”dvd_pow_natDegree_of_evalβ‚‚_eq_zero
FaithfulSMul.algebraMap_injective
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
mul_comm
dvd_pow_natDegree_of_evalβ‚‚_eq_zero πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
Monic
evalβ‚‚
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
natDegree
β€”natDegree_scaleRoots
Ideal.mem_span_singleton
IsWeaklyEisensteinAt.pow_natDegree_le_of_root_of_monic_mem
scaleRoots.isWeaklyEisensteinAt
dvd_refl
scaleRoots_evalβ‚‚_eq_zero
injective_iff_map_eq_zero'
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
evalβ‚‚_at_apply
monic_scaleRoots_iff
le_rfl
isEisensteinAt_iff πŸ“–mathematicalβ€”IsEisensteinAt
Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
leadingCoeff
coeff
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
β€”β€”
isWeaklyEisensteinAt_iff πŸ“–mathematicalβ€”IsWeaklyEisensteinAt
Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
coeff
β€”β€”

Polynomial.IsEisensteinAt

Theorems

NameKindAssumesProvesValidatesDepends On
coeff_mem πŸ“–mathematicalPolynomial.IsEisensteinAtIdeal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Polynomial.coeff
β€”ne_iff_lt_or_gt
mem
Polynomial.coeff_eq_zero_of_natDegree_lt
Ideal.zero_mem
irreducible πŸ“–mathematicalPolynomial.IsEisensteinAt
CommRing.toCommSemiring
Polynomial.IsPrimitive
Polynomial.natDegree
CommSemiring.toSemiring
Irreducible
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
β€”Polynomial.irreducible_of_eisenstein_criterion
leading
mem
Polynomial.coe_lt_degree
Polynomial.natDegree_pos_iff_degree_pos
notMem
isWeaklyEisensteinAt πŸ“–mathematicalPolynomial.IsEisensteinAtPolynomial.IsWeaklyEisensteinAtβ€”mem
leading πŸ“–mathematicalPolynomial.IsEisensteinAtIdeal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Polynomial.leadingCoeff
β€”β€”
mem πŸ“–mathematicalPolynomial.IsEisensteinAt
Polynomial.natDegree
CommSemiring.toSemiring
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Polynomial.coeff
β€”β€”
notMem πŸ“–mathematicalPolynomial.IsEisensteinAtIdeal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Polynomial.coeff
β€”β€”

Polynomial.IsWeaklyEisensteinAt

Theorems

NameKindAssumesProvesValidatesDepends On
exists_mem_adjoin_mul_eq_pow_natDegree πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Polynomial.Monic
Polynomial.IsWeaklyEisensteinAt
Submodule.span
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Set
Set.instSingletonSet
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
RingHom
RingHom.instFunLike
algebraMap
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.natDegree
Polynomial.map
β€”eq_neg_of_add_eq_zero_left
one_mul
Polynomial.Monic.coeff_natDegree
Polynomial.Monic.map
Finset.sum_range
Finset.sum_insert
Finset.notMem_range_self
Finset.range_add_one
Polynomial.eval_eq_sum_range
Polynomial.evalβ‚‚_eq_eval_map
Polynomial.aeval_def
Ideal.mem_span_singleton
mem
Polynomial.coeff_map
lt_of_lt_of_le
Polynomial.natDegree_map_le
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
mul_assoc
Finset.mul_sum
neg_eq_neg_one_mul
mul_comm
Subalgebra.mul_mem
Subalgebra.neg_mem
Subalgebra.one_mem
Subalgebra.sum_mem
Subalgebra.algebraMap_mem
Subalgebra.pow_mem
Algebra.subset_adjoin
Set.mem_singleton
Zero.instNonempty
Function.sometimes_spec
exists_mem_adjoin_mul_eq_pow_natDegree_le πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Polynomial.Monic
Polynomial.IsWeaklyEisensteinAt
Submodule.span
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Set
Set.instSingletonSet
Polynomial.natDegree
Polynomial.map
algebraMap
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
RingHom
RingHom.instFunLike
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”ExistsAddOfLE.exists_add_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
pow_add
exists_mem_adjoin_mul_eq_pow_natDegree
Subalgebra.mul_mem
Subalgebra.pow_mem
Algebra.subset_adjoin
Set.mem_singleton
mul_assoc
map πŸ“–mathematicalPolynomial.IsWeaklyEisensteinAtPolynomial.map
CommSemiring.toSemiring
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”Polynomial.isWeaklyEisensteinAt_iff
Polynomial.coeff_map
Ideal.mem_map_of_mem
mem
lt_of_lt_of_le
Polynomial.natDegree_map_le
mem πŸ“–mathematicalPolynomial.IsWeaklyEisensteinAt
Polynomial.natDegree
CommSemiring.toSemiring
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Polynomial.coeff
β€”β€”
mul πŸ“–mathematicalPolynomial.IsWeaklyEisensteinAtPolynomial
CommSemiring.toSemiring
Polynomial.instMul
β€”Polynomial.isWeaklyEisensteinAt_iff
Polynomial.coeff_mul
Ideal.sum_mem
lt_or_ge
Ideal.mul_mem_right
Ideal.instIsTwoSided
LT.lt.trans_le
Polynomial.natDegree_mul_le
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
sub_eq_zero_of_eq
Nat.cast_add
Finset.HasAntidiagonal.mem_antidiagonal
Mathlib.Tactic.Linarith.sub_nonpos_of_le
IsStrictOrderedRing.toIsOrderedRing
Ideal.mul_mem_left
pow_natDegree_le_of_aeval_zero_of_monic_mem_map πŸ“–mathematicalPolynomial.IsWeaklyEisensteinAt
CommRing.toCommSemiring
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Polynomial.Monic
Polynomial.natDegree
Polynomial.map
algebraMap
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.map
RingHom
RingHom.instFunLike
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”pow_natDegree_le_of_root_of_monic_mem
map
Polynomial.IsRoot.def
Polynomial.evalβ‚‚_eq_eval_map
Polynomial.aeval_def
Polynomial.Monic.map
Eq.le
ExistsAddOfLE.exists_add_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
pow_add
Ideal.mul_mem_right
Ideal.instIsTwoSided_1
pow_natDegree_le_of_root_of_monic_mem πŸ“–mathematicalPolynomial.IsWeaklyEisensteinAt
CommRing.toCommSemiring
Polynomial.IsRoot
CommSemiring.toSemiring
Polynomial.Monic
Polynomial.natDegree
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”ExistsAddOfLE.exists_add_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
pow_add
eq_neg_of_add_eq_zero_left
one_mul
Polynomial.Monic.coeff_natDegree
Finset.sum_range
Finset.sum_insert
Finset.notMem_range_self
Finset.range_add_one
Polynomial.eval_eq_sum_range
Polynomial.IsRoot.def
neg_mem_iff
NonUnitalSubringClass.toNegMemClass
instNonUnitalSubringClassIdeal
Submodule.sum_mem
Ideal.mul_mem_right
Ideal.instIsTwoSided_1
mem

Polynomial.Monic

Theorems

NameKindAssumesProvesValidatesDepends On
isEisensteinAt_of_mem_of_notMem πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Polynomial.coeff
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Polynomial.IsEisensteinAtβ€”leadingCoeff_notMem
leadingCoeff_notMem πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Polynomial.leadingCoeff
β€”Ideal.ne_top_iff_one
leadingCoeff

Polynomial.scaleRoots

Theorems

NameKindAssumesProvesValidatesDepends On
isWeaklyEisensteinAt πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Polynomial.IsWeaklyEisensteinAt
Polynomial.scaleRoots
β€”Polynomial.coeff_scaleRoots
Ideal.mul_mem_left
Ideal.pow_mem_of_mem
tsub_pos_iff_lt
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
Polynomial.natDegree_scaleRoots

---

← Back to Index