Documentation Verification Report

Criterion

📁 Source: Mathlib/RingTheory/Polynomial/Eisenstein/Criterion.lean

Statistics

MetricCount
Definitions0
TheoremsgeneralizedEisenstein, irreducible_of_eisenstein_criterion
2
Total2

Polynomial

Theorems

NameKindAssumesProvesValidatesDepends On
generalizedEisenstein 📖Irreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
map
CommSemiring.toSemiring
CommRing.toCommSemiring
algebraMap
Monic
IsPrimitive
natDegree
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
leadingCoeff
Monoid.toNatPow
RingHom.instRingHomClass
Ideal.instIsTwoSided_1
degree_eq_zero_of_isUnit
IsDomain.to_noZeroDivisors
IsDomain.toNontrivial
dvd_mul_right
dvd_mul_left
mul_add
Distrib.leftDistribClass
add_mul
Distrib.rightDistribClass
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
modByMonic_eq_zero_iff_dvd
Dvd.dvd.mul_left
dvd_pow_self
Dvd.dvd.mul_right
add_zero
zero_add
ext
Ideal.Quotient.eq_zero_iff_mem
pow_two
Ideal.mul_mem_mul
RingHom.mem_ker
coeff_map
coeff_zero
coeff_mul
map_sum
RingHomClass.toAddMonoidHomClass
Finset.sum_congr
Finset.sum_const_zero
map_modByMonic
zero_modByMonic
irreducible_of_eisenstein_criterion 📖mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
leadingCoeff
coeff
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
degree
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
IsPrimitive
Irreducible
Polynomial
semiring
generalizedEisenstein
Ideal.Quotient.isDomain
Ideal.instIsTwoSided_1
map_X
instIsDomain
monic_X
natDegree_pos_iff_degree_pos
IsScalarTower.algebraMap_eq
OreLocalization.instIsScalarTower
IsScalarTower.right
FractionRing.instFaithfulSMul
instFaithfulSMul
Ideal.Quotient.eq_zero_iff_mem
map_C
map_pow
map_mul
ext
coeff_map
coeff_C_mul
coeff_X_pow
mul_ite
mul_one
MulZeroClass.mul_zero
sub_ite
sub_zero
leadingCoeff.eq_1
sub_self
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
coe_lt_degree
coeff_eq_zero_of_natDegree_lt
Ideal.zero_mem
RingHom.instRingHomClass
modByMonic_X
C_eq_zero
coeff_zero_eq_eval_zero
RingHom.ker_comp_of_injective
FaithfulSMul.algebraMap_injective
Ideal.ext
Ideal.mk_ker

---

← Back to Index