Documentation Verification Report

IsIntegral

📁 Source: Mathlib/RingTheory/Polynomial/Eisenstein/IsIntegral.lean

Statistics

MetricCount
Definitions0
Theoremscyclotomic_comp_X_add_one_isEisensteinAt, cyclotomic_prime_pow_comp_X_add_one_isEisensteinAt, dvd_coeff_zero_of_aeval_eq_prime_smul_of_minpoly_isEisensteinAt, mem_adjoin_of_dvd_coeff_of_dvd_aeval, mem_adjoin_of_smul_prime_pow_smul_of_minpoly_isEisensteinAt, mem_adjoin_of_smul_prime_smul_of_minpoly_isEisensteinAt
6
Total6

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
cyclotomic_comp_X_add_one_isEisensteinAt 📖mathematicalPolynomial.IsEisensteinAt
Int.instCommSemiring
Polynomial.comp
Ring.toSemiring
Int.instRing
Polynomial.cyclotomic
Polynomial
Polynomial.instAdd
Polynomial.X
Polynomial.instOne
Submodule.span
Int.instSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semiring.toModule
Set
Set.instSingletonSet
Polynomial.Monic.isEisensteinAt_of_mem_of_notMem
eq_intCast
RingHom.instRingHomClass
Int.cast_one
Polynomial.Monic.comp
Polynomial.cyclotomic.monic
Polynomial.monic_X_add_C
zero_ne_one
Polynomial.natDegree_X_add_C
Int.instNontrivial
Ideal.IsPrime.ne_top
Ideal.span_singleton_prime
Nat.cast_zero
Int.instCharZero
Nat.Prime.ne_zero
Fact.out
Nat.prime_iff_prime_int
Polynomial.cyclotomic_prime
Polynomial.geom_sum_X_comp_X_add_one_eq_sum
Polynomial.lcoeff_apply
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Polynomial.C_eq_natCast
Polynomial.C_mul_X_pow_eq_monomial
Polynomial.coeff_monomial
Finset.sum_ite_eq'
LT.lt.trans_le
Nat.totient_prime
Polynomial.natDegree_cyclotomic
mul_one
Polynomial.natDegree_comp
NormMulClass.toNoZeroDivisors
Int.instNormMulClass
Nat.Prime.dvd_choose_self
lt_tsub_iff_right
Nat.instOrderedSub
Polynomial.coeff_zero_eq_eval_zero
Polynomial.eval_comp
Polynomial.eval_add
Polynomial.eval_X
Polynomial.eval_one
zero_add
Polynomial.eval_geom_sum
one_geom_sum
Ideal.submodule_span_eq
IsScalarTower.left
Ideal.span_singleton_pow
Ideal.instIsTwoSided_1
Ideal.mem_span_singleton
Nat.Prime.two_le
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.mul_neg
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Meta.NormNum.isNat_lt_true
IsStrictOrderedRing.toIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Nat.cast_pow
mul_nonneg_of_nonpos_of_nonpos
AddGroup.existsAddOfLE
IsOrderedRing.toMulPosMono
covariant_swap_add_of_covariant_add
Int.instAddLeftMono
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Mathlib.Tactic.Linarith.natCast_nonneg
cyclotomic_prime_pow_comp_X_add_one_isEisensteinAt 📖mathematicalPolynomial.IsEisensteinAt
Int.instCommSemiring
Polynomial.comp
Ring.toSemiring
Int.instRing
Polynomial.cyclotomic
Monoid.toNatPow
Nat.instMonoid
Polynomial
Polynomial.instAdd
Polynomial.X
Polynomial.instOne
Submodule.span
Int.instSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semiring.toModule
Set
Set.instSingletonSet
Polynomial.Monic.isEisensteinAt_of_mem_of_notMem
eq_intCast
RingHom.instRingHomClass
Int.cast_one
Polynomial.Monic.comp
Polynomial.cyclotomic.monic
Polynomial.monic_X_add_C
zero_ne_one
Polynomial.natDegree_X_add_C
Int.instNontrivial
Ideal.IsPrime.ne_top
Ideal.span_singleton_prime
Nat.cast_zero
Int.instCharZero
Nat.Prime.ne_zero
Fact.out
Nat.prime_iff_prime_int
pow_one
Polynomial.IsEisensteinAt.mem
cyclotomic_comp_X_add_one_isEisensteinAt
Ideal.submodule_span_eq
Ideal.mem_span_singleton
ZMod.intCast_zmod_eq_zero_iff_dvd
Polynomial.coeff_map
Polynomial.map_comp
Polynomial.map_cyclotomic
Polynomial.map_add
Polynomial.map_X
Polynomial.map_one
pow_add
Polynomial.cyclotomic_mul_prime_dvd_eq_pow
ZMod.charP
pow_succ'
Polynomial.pow_comp
ZMod.expand_card
Polynomial.coeff_expand
Nat.Prime.pos
mul_comm
Nat.totient_prime_pow
Polynomial.natDegree_cyclotomic
mul_one
Polynomial.natDegree_comp
NormMulClass.toNoZeroDivisors
Int.instNormMulClass
lt_of_mul_lt_mul_left'
contravariant_lt_of_covariant_le
Nat.instMulLeftMono
mul_assoc
Polynomial.coeff_zero_eq_eval_zero
Polynomial.eval_comp
Polynomial.cyclotomic_prime_pow_eq_geom_sum
Polynomial.eval_add
Polynomial.eval_X
Polynomial.eval_one
zero_add
Polynomial.eval_finset_sum
Ideal.span_singleton_pow
Ideal.instIsTwoSided_1
Finset.sum_congr
Polynomial.eval_pow
one_pow
Finset.sum_const
Finset.card_range
Nat.smul_one_eq_cast
Nat.Prime.two_le
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.mul_neg
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Meta.NormNum.isNat_lt_true
IsStrictOrderedRing.toIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Nat.cast_pow
mul_nonneg_of_nonpos_of_nonpos
AddGroup.existsAddOfLE
IsOrderedRing.toMulPosMono
covariant_swap_add_of_covariant_add
Int.instAddLeftMono
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
Mathlib.Tactic.Linarith.natCast_nonneg
dvd_coeff_zero_of_aeval_eq_prime_smul_of_minpoly_isEisensteinAt 📖mathematicalPrime
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
IsIntegral
DivisionRing.toRing
Field.toDivisionRing
PowerBasis.gen
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Polynomial.semiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
Algebra.toSMul
Polynomial.IsEisensteinAt
minpoly
Submodule.span
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Set
Set.instSingletonSet
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.coeff
LT.lt.ne'
PowerBasis.dim_pos
IsLocalRing.toNontrivial
Field.instIsLocalRing
PowerBasis.finrank
commRing_strongRankCondition
PowerBasis.natDegree_minpoly
minpoly.isIntegrallyClosed_eq_field_fractions'
instIsDomain
Polynomial.Monic.natDegree_map
minpoly.monic
IsIntegral.sub
IsIntegral.mul
IsIntegral.pow
IsIntegral.sum
IsIntegral.smul
IsScalarTower.left
adjoin_le_integralClosure
IsIntegrallyClosed.isIntegral_iff
Algebra.isIntegral_norm
IsFractionRing.injective
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
map_neg
RingHomClass.toAddMonoidHomClass
map_one
MonoidHomClass.toOneHomClass
Algebra.smul_def
IsScalarTower.algebraMap_apply
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
Algebra.norm_algebraMap
Algebra.PowerBasis.norm_gen_eq_coeff_zero_minpoly
Polynomial.coeff_map
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.pow_prod_atom
eq_sub_of_add_eq
pow_add
smul_smul
mul_comm
add_mul
Distrib.rightDistribClass
smul_mul_assoc
IsScalarTower.right
one_mul
Finset.sum_mul
Finset.sum_congr
pow_zero
Polynomial.aeval_eq_sum_range
Finset.add_sum_erase
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instNoMaxOrder
Nat.instCanonicallyOrderedAdd
Algebra.smul_mul_assoc
Polynomial.IsEisensteinAt.notMem
Ideal.mem_span_singleton
Ideal.span_singleton_pow
Ideal.instIsTwoSided_1
Prime.dvd_of_pow_dvd_pow_mul_pow_of_square_not_dvd
IsDomain.toIsCancelMulZero
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
Mathlib.Tactic.RingNF.int_rawCast_neg
add_zero
Mathlib.Tactic.RingNF.mul_assoc_rev
pow_mul
neg_one_sq
one_pow
IsUnit.dvd_mul_right
Nontrivial.to_nonempty
Polynomial.IsWeaklyEisensteinAt.exists_mem_adjoin_mul_eq_pow_natDegree_le
minpoly.aeval
Polynomial.IsEisensteinAt.isWeaklyEisensteinAt
Function.sometimes_spec
mem_adjoin_of_dvd_coeff_of_dvd_aeval 📖mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
Polynomial.coeff
CommSemiring.toSemiring
DFunLike.coe
AlgHom
Polynomial
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
Algebra.toSMul
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set
Set.instSingletonSet
smul_right_injective
IsDomain.toIsCancelMulZero
Finset.smul_sum
Finset.mem_range
smul_smul
Finset.sum_range
Polynomial.aeval_eq_sum_range
Subalgebra.sum_mem
Subalgebra.smul_mem
Subalgebra.pow_mem
Algebra.subset_adjoin
Set.mem_singleton
Nontrivial.to_nonempty
IsDomain.toNontrivial
Function.sometimes_spec
mem_adjoin_of_smul_prime_pow_smul_of_minpoly_isEisensteinAt 📖Prime
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
IsIntegral
DivisionRing.toRing
Field.toDivisionRing
PowerBasis.gen
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Subalgebra
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set
Set.instSingletonSet
Algebra.toSMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Polynomial.IsEisensteinAt
minpoly
Submodule.span
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
pow_zero
one_smul
mem_adjoin_of_smul_prime_smul_of_minpoly_isEisensteinAt
IsIntegral.smul
IsScalarTower.left
SemigroupAction.mul_smul
pow_succ'
mem_adjoin_of_smul_prime_smul_of_minpoly_isEisensteinAt 📖Prime
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
IsIntegral
DivisionRing.toRing
Field.toDivisionRing
PowerBasis.gen
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Subalgebra
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set
Set.instSingletonSet
Algebra.toSMul
Polynomial.IsEisensteinAt
minpoly
Submodule.span
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Polynomial.IsEisensteinAt.notMem
Ideal.mem_span_singleton
IsScalarTower.left
Ideal.span_singleton_pow
Ideal.instIsTwoSided_1
PowerBasis.finite
LT.lt.ne'
PowerBasis.dim_pos
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.IsTorsionFree.trans_faithfulSMul
IsFractionRing.instFaithfulSMul
IsDomain.toNontrivial
IsDomain.toIsCancelMulZero
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Algebra.adjoin_singleton_eq_range_aeval
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
minpoly.aeval
MulZeroClass.zero_mul
add_zero
Polynomial.modByMonic_add_div
minpoly.monic
Polynomial.aeval_zero
Algebra.smul_def
IsDomain.to_noZeroDivisors
IsScalarTower.algebraMap_eq
RingHom.injective
DivisionRing.isSimpleRing
IsFractionRing.injective
Prime.ne_zero
injective_iff_map_eq_zero
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
Subalgebra.zero_mem
mem_adjoin_of_dvd_coeff_of_dvd_aeval
Nat.case_strong_induction_on
dvd_coeff_zero_of_aeval_eq_prime_smul_of_minpoly_isEisensteinAt
Prime.dvd_of_pow_dvd_pow_mul_pow_of_square_not_dvd
Polynomial.degree_modByMonic_lt
lt_of_lt_of_le
lt_of_le_of_lt
Finset.mem_range
Polynomial.natDegree_lt_natDegree_iff
add_comm
add_assoc
AddLeftCancelSemigroup.toIsLeftCancelAdd
LT.lt.le
Finset.mem_range_succ_iff
le_trans
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
mul_assoc
smul_mul_assoc
IsScalarTower.right
pow_add
Polynomial.Monic.natDegree_map
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
le_add_iff_nonneg_right
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
contravariant_lt_of_covariant_le
mul_smul_comm
Algebra.to_smulCommClass
Finset.sum_congr
Finset.sum_union
Finset.disjoint_range_addLeftEmbedding
Finset.range_add
Polynomial.aeval_eq_sum_range
eq_sub_of_add_eq
mul_add
Distrib.leftDistribClass
Finset.mul_sum
Finset.sum_insert
Finset.notMem_erase
Finset.insert_erase
tsub_pos_iff_lt
Finset.sum_mul
add_mul
Distrib.rightDistribClass
Finset.sum_map
IsIntegral.sub
IsIntegral.mul
IsIntegral.pow
IsIntegral.add
IsIntegral.sum
IsIntegral.smul
adjoin_le_integralClosure
zero_le
IsIntegrallyClosed.isIntegral_iff
Algebra.isIntegral_norm
dvd_mul_of_dvd_left
dvd_rfl
mul_comm
Units.dvd_mul_left
Units.val_pow_eq_pow_val
mul_pow
Units.coe_neg_one
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
map_neg
map_one
MonoidHomClass.toOneHomClass
Polynomial.coeff_map
minpoly.isIntegrallyClosed_eq_field_fractions'
Algebra.PowerBasis.norm_gen_eq_coeff_zero_minpoly
PowerBasis.finrank
commRing_strongRankCondition
Algebra.norm_algebraMap
IsScalarTower.algebraMap_apply
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
mul_sub
PowerBasis.natDegree_minpoly
Nontrivial.to_nonempty
Polynomial.IsWeaklyEisensteinAt.exists_mem_adjoin_mul_eq_pow_natDegree_le
Polynomial.IsEisensteinAt.isWeaklyEisensteinAt
Function.sometimes_spec

---

← Back to Index