📁 Source: Mathlib/RingTheory/Polynomial/Eisenstein/IsIntegral.lean
cyclotomic_comp_X_add_one_isEisensteinAt
cyclotomic_prime_pow_comp_X_add_one_isEisensteinAt
dvd_coeff_zero_of_aeval_eq_prime_smul_of_minpoly_isEisensteinAt
mem_adjoin_of_dvd_coeff_of_dvd_aeval
mem_adjoin_of_smul_prime_pow_smul_of_minpoly_isEisensteinAt
mem_adjoin_of_smul_prime_smul_of_minpoly_isEisensteinAt
Polynomial.IsEisensteinAt
Int.instCommSemiring
Polynomial.comp
Ring.toSemiring
Int.instRing
Polynomial.cyclotomic
Polynomial
Polynomial.instAdd
Polynomial.X
Polynomial.instOne
Submodule.span
Int.instSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semiring.toModule
Set
Set.instSingletonSet
Polynomial.Monic.isEisensteinAt_of_mem_of_notMem
eq_intCast
RingHom.instRingHomClass
Int.cast_one
Polynomial.Monic.comp
Polynomial.cyclotomic.monic
Polynomial.monic_X_add_C
zero_ne_one
Polynomial.natDegree_X_add_C
Int.instNontrivial
Ideal.IsPrime.ne_top
Ideal.span_singleton_prime
Nat.cast_zero
Int.instCharZero
Nat.Prime.ne_zero
Fact.out
Nat.prime_iff_prime_int
Polynomial.cyclotomic_prime
Polynomial.geom_sum_X_comp_X_add_one_eq_sum
Polynomial.lcoeff_apply
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Polynomial.C_eq_natCast
Polynomial.C_mul_X_pow_eq_monomial
Polynomial.coeff_monomial
Finset.sum_ite_eq'
LT.lt.trans_le
Nat.totient_prime
Polynomial.natDegree_cyclotomic
mul_one
Polynomial.natDegree_comp
NormMulClass.toNoZeroDivisors
Int.instNormMulClass
Nat.Prime.dvd_choose_self
lt_tsub_iff_right
Nat.instOrderedSub
Polynomial.coeff_zero_eq_eval_zero
Polynomial.eval_comp
Polynomial.eval_add
Polynomial.eval_X
Polynomial.eval_one
zero_add
Polynomial.eval_geom_sum
one_geom_sum
Ideal.submodule_span_eq
IsScalarTower.left
Ideal.span_singleton_pow
Ideal.instIsTwoSided_1
Ideal.mem_span_singleton
Nat.Prime.two_le
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.mul_neg
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Meta.NormNum.isNat_lt_true
IsStrictOrderedRing.toIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Nat.cast_pow
mul_nonneg_of_nonpos_of_nonpos
AddGroup.existsAddOfLE
IsOrderedRing.toMulPosMono
covariant_swap_add_of_covariant_add
Int.instAddLeftMono
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Mathlib.Tactic.Linarith.natCast_nonneg
Monoid.toNatPow
Nat.instMonoid
pow_one
Polynomial.IsEisensteinAt.mem
ZMod.intCast_zmod_eq_zero_iff_dvd
Polynomial.coeff_map
Polynomial.map_comp
Polynomial.map_cyclotomic
Polynomial.map_add
Polynomial.map_X
Polynomial.map_one
pow_add
Polynomial.cyclotomic_mul_prime_dvd_eq_pow
ZMod.charP
pow_succ'
Polynomial.pow_comp
ZMod.expand_card
Polynomial.coeff_expand
Nat.Prime.pos
mul_comm
Nat.totient_prime_pow
lt_of_mul_lt_mul_left'
Nat.instMulLeftMono
mul_assoc
Polynomial.cyclotomic_prime_pow_eq_geom_sum
Polynomial.eval_finset_sum
Finset.sum_congr
Polynomial.eval_pow
one_pow
Finset.sum_const
Finset.card_range
Nat.smul_one_eq_cast
Prime
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
IsIntegral
DivisionRing.toRing
Field.toDivisionRing
PowerBasis.gen
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DFunLike.coe
AlgHom
Polynomial.semiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
Algebra.toSMul
minpoly
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.coeff
LT.lt.ne'
PowerBasis.dim_pos
IsLocalRing.toNontrivial
Field.instIsLocalRing
PowerBasis.finrank
commRing_strongRankCondition
PowerBasis.natDegree_minpoly
minpoly.isIntegrallyClosed_eq_field_fractions'
instIsDomain
Polynomial.Monic.natDegree_map
minpoly.monic
IsIntegral.sub
IsIntegral.mul
IsIntegral.pow
IsIntegral.sum
IsIntegral.smul
adjoin_le_integralClosure
IsIntegrallyClosed.isIntegral_iff
Algebra.isIntegral_norm
IsFractionRing.injective
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
map_neg
RingHomClass.toAddMonoidHomClass
map_one
MonoidHomClass.toOneHomClass
Algebra.smul_def
IsScalarTower.algebraMap_apply
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
Algebra.norm_algebraMap
Algebra.PowerBasis.norm_gen_eq_coeff_zero_minpoly
Mathlib.Tactic.Ring.mul_pf_right
Nat.cast_one
Mathlib.Tactic.Ring.pow_prod_atom
eq_sub_of_add_eq
smul_smul
add_mul
Distrib.rightDistribClass
smul_mul_assoc
IsScalarTower.right
one_mul
Finset.sum_mul
pow_zero
Polynomial.aeval_eq_sum_range
Finset.add_sum_erase
IsRightCancelAdd.addRightStrictMono_of_addRightMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instNoMaxOrder
Nat.instCanonicallyOrderedAdd
Algebra.smul_mul_assoc
Polynomial.IsEisensteinAt.notMem
Prime.dvd_of_pow_dvd_pow_mul_pow_of_square_not_dvd
IsDomain.toIsCancelMulZero
Mathlib.Tactic.RingNF.nat_rawCast_1
Mathlib.Tactic.RingNF.int_rawCast_neg
add_zero
Mathlib.Tactic.RingNF.mul_assoc_rev
pow_mul
neg_one_sq
IsUnit.dvd_mul_right
Nontrivial.to_nonempty
Polynomial.IsWeaklyEisensteinAt.exists_mem_adjoin_mul_eq_pow_natDegree_le
minpoly.aeval
Polynomial.IsEisensteinAt.isWeaklyEisensteinAt
Function.sometimes_spec
CommSemiring.toNonUnitalCommSemiring
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
smul_right_injective
Finset.smul_sum
Finset.mem_range
Finset.sum_range
Subalgebra.sum_mem
Subalgebra.smul_mem
Subalgebra.pow_mem
Algebra.subset_adjoin
Set.mem_singleton
IsDomain.toNontrivial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
one_smul
SemigroupAction.mul_smul
PowerBasis.finite
Module.IsTorsionFree.trans_faithfulSMul
IsFractionRing.instFaithfulSMul
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Algebra.adjoin_singleton_eq_range_aeval
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
NonUnitalAlgSemiHomClass.toMulHomClass
MulZeroClass.zero_mul
Polynomial.modByMonic_add_div
Polynomial.aeval_zero
IsDomain.to_noZeroDivisors
IsScalarTower.algebraMap_eq
RingHom.injective
DivisionRing.isSimpleRing
Prime.ne_zero
injective_iff_map_eq_zero
Subalgebra.zero_mem
Nat.case_strong_induction_on
Polynomial.degree_modByMonic_lt
lt_of_lt_of_le
lt_of_le_of_lt
Polynomial.natDegree_lt_natDegree_iff
add_comm
add_assoc
AddLeftCancelSemigroup.toIsLeftCancelAdd
LT.lt.le
Finset.mem_range_succ_iff
le_trans
le_add_iff_nonneg_right
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
mul_smul_comm
Algebra.to_smulCommClass
Finset.sum_union
Finset.disjoint_range_addLeftEmbedding
Finset.range_add
mul_add
Distrib.leftDistribClass
Finset.mul_sum
Finset.sum_insert
Finset.notMem_erase
Finset.insert_erase
tsub_pos_iff_lt
Finset.sum_map
IsIntegral.add
zero_le
dvd_mul_of_dvd_left
dvd_rfl
Units.dvd_mul_left
Units.val_pow_eq_pow_val
mul_pow
Units.coe_neg_one
mul_sub
---
← Back to Index