Documentation Verification Report

GaussLemma

๐Ÿ“ Source: Mathlib/RingTheory/Polynomial/GaussLemma.lean

Statistics

MetricCount
Definitions0
Theoremseq_map_mul_C_of_dvd, dvd_iff_map_cast_dvd_map_cast, irreducible_iff_irreducible_map_cast, dvd_iff_fraction_map_dvd_fraction_map, dvd_of_fraction_map_dvd_fraction_map, irreducible_iff_irreducible_map_fraction_map, irreducible_of_irreducible_map_of_injective, isUnit_iff_isUnit_map, isUnit_iff_isUnit_map_of_injective, dvd_iff_fraction_map_dvd_fraction_map, dvd_of_fraction_map_dvd_fraction_map, irreducible_iff_irreducible_map_fraction_map, isIntegrallyClosed_iff', isUnit_or_eq_zero_of_isUnit_integerNormalization_primPart, mem_lifts_of_monic_of_dvd_map
15
Total15

IsIntegrallyClosed

Theorems

NameKindAssumesProvesValidatesDepends On
eq_map_mul_C_of_dvd ๐Ÿ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Polynomial.map
algebraMap
Polynomial.instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
Polynomial.leadingCoeff
โ€”ne_zero_of_dvd_ne_zero
Polynomial.Monic.ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
Polynomial.Monic.map
Associated.dvd_iff_dvd_left
associated_mul_isUnit_left_iff
Polynomial.isUnit_C
Ne.isUnit
inv_ne_zero
Polynomial.leadingCoeff_ne_zero
Associated.refl
integralClosure_eq_bot
IsFractionRing.injective
RingHom.ext
AlgEquiv.symm_apply_apply
Polynomial.mem_lifts
integralClosure.mem_lifts_of_monic_of_dvd_map
Polynomial.monic_mul_leadingCoeff_inv
Polynomial.map_map
mul_assoc
Polynomial.C_mul
inv_mul_cancelโ‚€
Polynomial.C_1
mul_one

Polynomial

Theorems

NameKindAssumesProvesValidatesDepends On
isIntegrallyClosed_iff' ๐Ÿ“–mathematicalโ€”IsIntegrallyClosed
Irreducible
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
map
algebraMap
โ€”Monic.irreducible_iff_irreducible_map_fraction_map
isIntegrallyClosed_iff
RingHom.mem_range
minpoly.mem_range_of_degree_eq_one
Monic.degree_map
IsLocalRing.toNontrivial
Field.instIsLocalRing
minpoly.monic
degree_eq_one_of_irreducible_of_root
instIsDomain
minpoly.irreducible
IsRoot.eq_1
eval_map_algebraMap
minpoly.aeval
isUnit_or_eq_zero_of_isUnit_integerNormalization_primPart ๐Ÿ“–mathematicalIsUnit
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
primPart
IsLocalization.integerNormalization
nonZeroDivisors
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
โ€”isUnit_iff
IsDomain.to_noZeroDivisors
IsLocalization.integerNormalization_map_to_map
isUnit_of_mul_isUnit_right
instIsDedekindFiniteMonoid
algebraMap_apply
Algebra.smul_def
eq_C_content_mul_primPart
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
instIsDomain
isUnit_iff_ne_zero
injective_iff_map_eq_zero
RingHomClass.toAddMonoidHomClass
IsFractionRing.injective
IsFractionRing.integerNormalization_eq_zero_iff
content_eq_zero_iff
mul_eq_zero
Units.ne_zero
IsDomain.toNontrivial
map_mul
map_C

Polynomial.IsPrimitive

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_iff_fraction_map_dvd_fraction_map ๐Ÿ“–mathematicalPolynomial.IsPrimitive
CommRing.toCommSemiring
Polynomial
CommSemiring.toSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Polynomial.map
algebraMap
โ€”Polynomial.map_mul
dvd_of_fraction_map_dvd_fraction_map
dvd_of_fraction_map_dvd_fraction_map ๐Ÿ“–โ€”Polynomial.IsPrimitive
CommRing.toCommSemiring
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Polynomial.map
CommSemiring.toSemiring
algebraMap
โ€”โ€”IsLocalization.integerNormalization_map_to_map
Polynomial.map_injective
IsFractionRing.injective
Polynomial.map_mul
Polynomial.algebraMap_apply
Algebra.smul_def
mul_assoc
mul_comm
Polynomial.map_C
Associated.dvd_iff_dvd_right
Associated.symm
Polynomial.isUnit_primPart_C
primPart_eq
Polynomial.primPart_mul
mul_ne_zero
Polynomial.instNoZeroDivisors
IsDomain.to_noZeroDivisors
ne_zero
IsDomain.toNontrivial
Polynomial.C_eq_zero
Mathlib.Tactic.Contrapose.contraposeโ‚ƒ
dvd_primPart_iff_dvd
irreducible_iff_irreducible_map_fraction_map ๐Ÿ“–mathematicalPolynomial.IsPrimitive
CommRing.toCommSemiring
Irreducible
Polynomial
CommSemiring.toSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
algebraMap
โ€”Irreducible.not_isUnit
isUnit_iff_isUnit_map
IsLocalization.integerNormalization_map_to_map
mul_ne_zero
IsDomain.to_noZeroDivisors
mem_nonZeroDivisors_iff_ne_zero
IsDomain.toNontrivial
Polynomial.map_injective
IsFractionRing.injective
Polynomial.map_mul
Polynomial.algebraMap_apply
Algebra.smul_def
Polynomial.map_C
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
dvd_dvd_iff_associated
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
normalize_eq_normalize_iff
MonoidWithZeroHom.map_mul
Polynomial.normalize_content
mul_one
content_eq_one
Polynomial.content_C
Polynomial.content_mul
mul_eq_zero
Polynomial.instNoZeroDivisors
instIsDomain
ne_zero
Polynomial.map_zero
Irreducible.isUnit_or_isUnit
mul_left_cancelโ‚€
Polynomial.instIsLeftCancelMulZeroOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
Polynomial.C_eq_zero
mul_assoc
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
mul_comm
Polynomial.eq_C_content_mul_primPart
Polynomial.isUnit_or_eq_zero_of_isUnit_integerNormalization_primPart
isUnit_of_mul_isUnit_right
instIsDedekindFiniteMonoid
irreducible_of_irreducible_map_of_injective
irreducible_of_irreducible_map_of_injective ๐Ÿ“–โ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
Polynomial.IsPrimitive
Irreducible
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.map
โ€”โ€”Irreducible.not_isUnit
IsUnit.map
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
isUnit_iff_isUnit_map_of_injective
Polynomial.isPrimitive_of_dvd
Dvd.intro
Dvd.intro_left
Irreducible.isUnit_or_isUnit
Polynomial.map_mul
isUnit_iff_isUnit_map ๐Ÿ“–mathematicalPolynomial.IsPrimitive
CommRing.toCommSemiring
IsUnit
Polynomial
CommSemiring.toSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
algebraMap
โ€”isUnit_iff_isUnit_map_of_injective
instIsDomain
IsFractionRing.injective
isUnit_iff_isUnit_map_of_injective ๐Ÿ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
Polynomial.IsPrimitive
IsUnit
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.map
โ€”RingHom.isUnit_map
Polynomial.isUnit_iff
IsDomain.to_noZeroDivisors
Polynomial.degree_C
Units.ne_zero
IsDomain.toNontrivial
Polynomial.eq_C_of_degree_eq_zero
Polynomial.degree_map_eq_of_injective
Polynomial.isUnit_C
Polynomial.isPrimitive_iff_isUnit_of_C_dvd
dvd_rfl

Polynomial.IsPrimitive.Int

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_iff_map_cast_dvd_map_cast ๐Ÿ“–mathematicalPolynomial.IsPrimitive
Int.instCommSemiring
Polynomial
Int.instSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
Int.instCommRing
Rat.semiring
Rat.commRing
Polynomial.map
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
โ€”Polynomial.IsPrimitive.dvd_iff_fraction_map_dvd_fraction_map
Rat.isFractionRing
Int.instIsDomain
instNonemptyNormalizedGCDMonoid
irreducible_iff_irreducible_map_cast ๐Ÿ“–mathematicalPolynomial.IsPrimitive
Int.instCommSemiring
Irreducible
Polynomial
Int.instSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Rat.semiring
Polynomial.map
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
Rat.commRing
โ€”Polynomial.IsPrimitive.irreducible_iff_irreducible_map_fraction_map
Rat.isFractionRing
Int.instIsDomain
instNonemptyNormalizedGCDMonoid

Polynomial.Monic

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_iff_fraction_map_dvd_fraction_map ๐Ÿ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Polynomial.map
algebraMap
โ€”dvd_of_fraction_map_dvd_fraction_map
Polynomial.map_mul
dvd_of_fraction_map_dvd_fraction_map ๐Ÿ“–โ€”Polynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Polynomial.map
algebraMap
โ€”โ€”IsIntegrallyClosed.eq_map_mul_C_of_dvd
dvd_of_mul_left_eq
dvd_of_mul_right_eq
Polynomial.map_injective
IsFractionRing.injective
Polynomial.map_mul
mul_one
Polynomial.C_1
leadingCoeff
of_mul_monic_left
map
irreducible_iff_irreducible_map_fraction_map ๐Ÿ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
Irreducible
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
algebraMap
โ€”irreducible_iff
Irreducible.not_isUnit
Polynomial.IsPrimitive.isUnit_iff_isUnit_map
isPrimitive
IsIntegrallyClosed.eq_map_mul_C_of_dvd
dvd_of_mul_right_eq
dvd_of_mul_left_eq
Polynomial.leadingCoeff_mul
IsDomain.to_noZeroDivisors
instIsDomain
leadingCoeff
map
Polynomial.coe_mapRingHom
IsUnit.mul
IsUnit.map
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Irreducible.isUnit_or_isUnit
Polynomial.map_injective
IsFractionRing.injective
Polynomial.map_mul
one_mul
Polynomial.C_1
Polynomial.C_mul
mul_assoc
mul_comm
isUnit_iff_exists_inv
instIsDedekindFiniteMonoid
isUnit_iff_exists_inv'
Polynomial.IsPrimitive.irreducible_of_irreducible_map_of_injective

integralClosure

Theorems

NameKindAssumesProvesValidatesDepends On
mem_lifts_of_monic_of_dvd_map ๐Ÿ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Polynomial.map
algebraMap
Subsemiring
Semiring.toNonAssocSemiring
Polynomial.semiring
SetLike.instMembership
Subsemiring.instSetLike
Polynomial.lifts
Subalgebra
Subalgebra.instSetLike
integralClosure
Subalgebra.toCommSemiring
Semifield.toCommSemiring
Subalgebra.toAlgebra
Algebra.id
โ€”Polynomial.Splits.mem_lift_of_roots_mem_range
instIsDomain
Polynomial.SplittingField.splits
Polynomial.Monic.map
SetLike.ext_iff
Subalgebra.range_algebraMap
roots_mem_integralClosure
Polynomial.aroots_def
IsScalarTower.algebraMap_eq
Polynomial.map_map
Multiset.mem_of_le
Polynomial.roots.le_of_dvd
Polynomial.Monic.ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
Polynomial.map_dvd
Polynomial.lifts_iff_coeff_lifts
RingHom.coe_range
SetLike.mem_coe
Polynomial.evalโ‚‚_eq_eval_map
injective_iff_map_eq_zero
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
RingHom.injective
DivisionRing.isSimpleRing
Polynomial.evalโ‚‚_at_apply
Polynomial.evalโ‚‚_map
Polynomial.coeff_map

---

โ† Back to Index