π Source: Mathlib/RingTheory/Polynomial/HilbertPoly.lean
hilbertPoly
hilbertPoly_linearMap
preHilbertPoly
coeff_mul_invOneSubPow_eq_hilbertPoly_eval
coeff_preHilbertPoly_self
eq_hilbertPoly_of_forall_coeff_eq_eval
existsUnique_hilbertPoly
hilbertPoly_X_pow_succ
hilbertPoly_add_left
hilbertPoly_eq_zero_of_le_rootMultiplicity_one
hilbertPoly_mul_one_sub_pow_add
hilbertPoly_mul_one_sub_succ
hilbertPoly_smul
hilbertPoly_succ
hilbertPoly_zero_left
hilbertPoly_zero_right
leadingCoeff_preHilbertPoly
natDegree_hilbertPoly_of_ne_zero
natDegree_hilbertPoly_of_ne_zero_of_rootMultiplicity_lt
natDegree_preHilbertPoly
preHilbertPoly_eq_choose_sub_add
natDegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries
PowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
PowerSeries.instModule
Semiring.toModule
LinearMap.instFunLike
PowerSeries.coeff
MvPowerSeries.instMul
toPowerSeries
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
PowerSeries.instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
PowerSeries.invOneSubPow
eval
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
PowerSeries.invOneSubPow_zero
mul_one
coeff_coe
eval_zero
coeff_eq_zero_of_natDegree_lt
eval_finset_sum
Finset.sum_congr
eval_smul
IsScalarTower.right
Finset.sum_coe_sort
le_trans
le_natDegree_of_ne_zero
mem_support_iff
LT.lt.le
PowerSeries.coeff_mul
PowerSeries.invOneSubPow_val_eq_mk_sub_one_add_choose_of_pos
Finset.sum_subset_zero_on_sdiff
Finset.mem_range_succ_iff
MulZeroClass.zero_mul
add_comm
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
coeff
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Nat.factorial
Nat.cast_zero
ne_of_gt
Nat.factorial_pos
natDegree_smul
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
inv_ne_zero
sub_add
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
coeff_smul
leadingCoeff_comp
ne_of_eq_of_ne
natDegree_X_sub_C
one_ne_zero
IsDomain.to_noZeroDivisors
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
Monic.def
monic_ascPochhammer
leadingCoeff_X_sub_C
one_pow
ExistsUnique.unique
ExistsUnique
Polynomial
eq_of_infinite_eval_eq
Set.Infinite.mono
Set.Infinite.image
Function.Injective.injOn
Nat.cast_injective
Set.Ioi_infinite
Nat.instNoMaxOrder
Monoid.toNatPow
semiring
X
coeff_X_pow
ite_smul
one_smul
zero_smul
Finset.sum_ite_eq'
NeZero.one
instAdd
add_zero
sum_def
sum_add_index
add_smul
rootMultiplicity
AddMonoidWithOne.toOne
instZero
exists_eq_pow_rootMultiplicity_mul_and_not_dvd
mul_assoc
neg_mul
one_mul
neg_sub
mul_comm
zero_add
pow_add
hilbertPoly.eq_1
instMul
instSub
instOne
pow_zero
pow_one
add_assoc
coe_sub
coe_one
coe_X
PowerSeries.one_sub_pow_mul_invOneSubPow_val_add_eq_invOneSubPow_val
coe_mul
Algebra.toSMul
Semifield.toCommSemiring
algebraOfAlgebra
Algebra.id
smul_zero
smul_sum
sum_smul_index'
smul_assoc
isScalarTower
Finset.sum
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
support
Finset.sum_const_zero
leadingCoeff
leadingCoeff.eq_1
not_lt
le_of_lt
natDegree_eq_of_le_of_coeff_ne_zero
natDegree_sum_le_of_forall_le
natDegree_smul_le
le_refl
finset_sum_coeff
eval_mul
eval_pow
eval_neg
eval_one
isReduced_of_noZeroDivisors
NeZero.charZero_one
not_iff_not
dvd_iff_isRoot
Nat.factorial_ne_zero
preHilbertPoly.eq_1
natDegree_comp
ascPochhammer_natDegree
add_comm_sub
C_1
map_sub
natDegree_add_C
natDegree_X
Nat.choose
map_natCast
eval_comp
eval_add
eval_sub
eval_X
eval_natCast
Nat.cast_add
Nat.cast_sub
Nat.cast_one
ascPochhammer_nat_eq_natCast_ascFactorial
Nat.ascFactorial_eq_factorial_mul_choose
Nat.cast_mul
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
GroupWithZero.toNontrivial
---
β Back to Index