📁 Source: Mathlib/RingTheory/Polynomial/IntegralNormalization.lean
integralNormalization
degree_integralNormalization
integralNormalization_C
integralNormalization_aeval_eq_zero
integralNormalization_coeff
integralNormalization_coeff_degree
integralNormalization_coeff_degree_ne
integralNormalization_coeff_mul_leadingCoeff_pow
integralNormalization_coeff_natDegree
integralNormalization_coeff_ne_natDegree
integralNormalization_degree
integralNormalization_eval₂_eq_zero
integralNormalization_eval₂_eq_zero_of_commute
integralNormalization_eval₂_leadingCoeff_mul
integralNormalization_eval₂_leadingCoeff_mul_of_commute
integralNormalization_map
integralNormalization_mul_C_leadingCoeff
integralNormalization_zero
leadingCoeff_smul_integralNormalization
monic_integralNormalization
natDegree_integralNormalization
support_integralNormalization
support_integralNormalization_subset
resultant_integralNormalization
degree
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
degree_of_subsingleton
degree_eq_natDegree
degree_eq_of_le_of_coeff_ne_zero
Finset.sup_le
WithBot.coe_le_coe
le_natDegree_of_mem_supp
NeZero.one
DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
instOne
degree_C
leadingCoeff_C
natDegree_C
zero_tsub
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
pow_zero
mul_one
Finset.sum_congr
support_C
Finset.sum_singleton
CharP.cast_eq_zero
CharP.ofCharZero
WithBot.charZero
Nat.instCharZero
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
AlgHom
CommSemiring.toSemiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
algebraMap
leadingCoeff
Algebra.commute_algebraMap_left
Commute.map
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
Commute.all
coeff
WithBot
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
WithBot.decidableEq
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
natDegree
coeff_ne_zero_of_eq_degree
finset_sum_coeff
coeff_monomial
Finset.sum_ite_eq'
MulZeroClass.zero_mul
natDegree_eq_of_degree_eq_some
one_mul
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
mul_assoc
le_tsub_iff_right
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
coe_lt_degree
coeff_eq_zero_of_degree_lt
lt_of_le_of_ne
le_of_not_gt
degree_ne_of_natDegree_ne
eval₂
Commute
eq_C_of_natDegree_eq_zero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
eval₂_zero
eval₂_C
MulZeroClass.mul_zero
eval₂_eq_sum_range
Finset.mul_sum
natDegree_eq_of_degree_eq
Commute.mul_pow
RingHom.map_pow
RingHom.map_mul
Commute.eq
map
ext
degree_map_eq_of_leadingCoeff_ne_zero
coeff_map
leadingCoeff_map_of_leadingCoeff_ne_zero
natDegree_map_eq_iff
map_mul
map_pow
instMul
scaleRoots
coeff_mul_C
coeff_scaleRoots
tsub_self
pow_succ
tsub_right_comm
le_tsub_iff_left
LT.lt.le
instZero
sum_zero_index
Algebra.toSMul
Algebra.smul_def
algebraMap_eq
mul_comm
Monic
monic_of_degree_le
natDegree_of_subsingleton
support
Subsingleton.eq_zero
Unique.instSubsingleton
Finset.ext
IsDomain.to_noZeroDivisors
isReduced_of_noZeroDivisors
Finset
Finset.instHasSubset
---
← Back to Index