Documentation Verification Report

Nilpotent

πŸ“ Source: Mathlib/RingTheory/Polynomial/Nilpotent.lean

Statistics

MetricCount
Definitions0
Theoremscoeff_isUnit_isNilpotent_of_isUnit, instIsLocalHomRingHomAlgebraMap, instIsLocalHomRingHomC, isNilpotent_C_iff, isNilpotent_C_mul_pow_X_of_isNilpotent, isNilpotent_X_mul_iff, isNilpotent_aeval_sub_of_isNilpotent_sub, isNilpotent_iff, isNilpotent_monomial_iff, isNilpotent_mul_X_iff, isNilpotent_pow_X_mul_C_of_isNilpotent, isNilpotent_reflect_iff, isNilpotent_reverse_iff, isUnit_C_add_X_mul_iff, isUnit_aeval_of_isUnit_aeval_of_isNilpotent_sub, isUnit_iff', isUnit_iff_coeff_isUnit_isNilpotent, isUnit_of_coeff_isUnit_isNilpotent, not_isUnit_of_degree_pos_of_isReduced, not_isUnit_of_natDegree_pos_of_isReduced
20
Total20

Polynomial

Theorems

NameKindAssumesProvesValidatesDepends On
coeff_isUnit_isNilpotent_of_isUnit πŸ“–mathematicalIsUnit
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
coeff
IsNilpotent
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
β€”IsUnit.exists_right_inv
IsUnit.of_mul_eq_one
instIsDedekindFiniteMonoid
mul_coeff_zero
coeff_one_zero
nilpotent_iff_mem_prime
Ideal.instIsTwoSided_1
Nat.WithBot.add_eq_zero_iff
degree_mul
Ideal.Quotient.noZeroDivisors
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
degree_one
IsDomain.toNontrivial
Ideal.Quotient.isDomain
coeff_eq_zero_of_degree_lt
WithBot.coe_pos
Ne.bot_lt
Ideal.mk_ker
RingHom.mem_ker
coeff_map
coe_mapRingHom
instIsLocalHomRingHomAlgebraMap πŸ“–mathematicalβ€”IsLocalHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom
Semiring.toNonAssocSemiring
semiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
RingHom.instFunLike
algebraMap
algebraOfAlgebra
Algebra.id
β€”instIsLocalHomRingHomC
instIsLocalHomRingHomC πŸ“–mathematicalβ€”IsLocalHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom
Semiring.toNonAssocSemiring
semiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
RingHom.instFunLike
C
β€”coeff_C
isNilpotent_C_iff πŸ“–mathematicalβ€”IsNilpotent
Polynomial
instZero
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”C_eq_zero
isNilpotent_C_mul_pow_X_of_isNilpotent πŸ“–mathematicalIsNilpotent
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial
instZero
semiring
instMul
DFunLike.coe
RingHom
RingHom.instFunLike
C
X
β€”Commute.isNilpotent_mul_right
Commute.symm
commute_X_pow
C_pow
C_0
isNilpotent_X_mul_iff πŸ“–mathematicalβ€”IsNilpotent
Polynomial
instZero
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
instMul
X
β€”Commute.isNilpotent_mul_left_iff
commute_X
Commute.mul_pow
MulZeroClass.mul_zero
isNilpotent_aeval_sub_of_isNilpotent_sub πŸ“–mathematicalIsNilpotent
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
DFunLike.coe
AlgHom
Polynomial
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
aeval
β€”Commute.isNilpotent_mul_left
Commute.all
isNilpotent_iff πŸ“–mathematicalβ€”IsNilpotent
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instZero
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
coeff
β€”coeff_zero_eq_aeval_zero
isNilpotent_C_iff
eval_pow
eval_add
eval_C
zero_add
eval_zero
coeff_add
coeff_C_zero
coeff_C_succ
add_zero
add_sub_cancel_right
Commute.isNilpotent_sub
Commute.all
mul_coeff_zero
coeff_X_zero
MulZeroClass.mul_zero
coeff_mul_X
isNilpotent_mul_X_iff
sum_monomial_eq
isNilpotent_sum
isNilpotent_monomial_iff πŸ“–mathematicalβ€”IsNilpotent
Polynomial
instZero
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”monomial_pow
isNilpotent_mul_X_iff πŸ“–mathematicalβ€”IsNilpotent
Polynomial
instZero
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
instMul
X
β€”commute_X
isNilpotent_X_mul_iff
isNilpotent_pow_X_mul_C_of_isNilpotent πŸ“–mathematicalIsNilpotent
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial
instZero
semiring
instMul
X
DFunLike.coe
RingHom
RingHom.instFunLike
C
β€”commute_X_pow
isNilpotent_C_mul_pow_X_of_isNilpotent
isNilpotent_reflect_iff πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
IsNilpotent
Polynomial
instZero
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
reflect
β€”le_or_gt
coeff_reflect
revAt_le
Nat.instOrderedSub
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
tsub_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
coeff_eq_zero_of_natDegree_lt
lt_of_le_of_lt
revAt_eq_self_of_lt
isNilpotent_reverse_iff πŸ“–mathematicalβ€”IsNilpotent
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instZero
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
reverse
β€”isNilpotent_reflect_iff
le_refl
isUnit_C_add_X_mul_iff πŸ“–mathematicalβ€”IsUnit
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
instAdd
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
instMul
X
IsNilpotent
instZero
Monoid.toNatPow
β€”coeff_add
coeff_C_succ
coeff_X_mul
zero_add
coeff_C_zero
mul_coeff_zero
coeff_X_zero
MulZeroClass.zero_mul
add_zero
isUnit_aeval_of_isUnit_aeval_of_isNilpotent_sub πŸ“–β€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
AlgHom
Polynomial
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
aeval
IsNilpotent
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
β€”β€”add_sub_cancel
IsNilpotent.isUnit_add_left_of_commute
isNilpotent_aeval_sub_of_isNilpotent_sub
Commute.all
isUnit_iff' πŸ“–mathematicalβ€”IsUnit
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
eval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsNilpotent
Ring.toSemiring
CommRing.toRing
instZero
Monoid.toNatPow
divByMonic
X
β€”modByMonic_add_div
monic_X
modByMonic_X
isUnit_iff_coeff_isUnit_isNilpotent πŸ“–mathematicalβ€”IsUnit
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
coeff
IsNilpotent
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
β€”coeff_isUnit_isNilpotent_of_isUnit
isUnit_of_coeff_isUnit_isNilpotent
isUnit_of_coeff_isUnit_isNilpotent πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
coeff
IsNilpotent
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
Polynomial
semiring
β€”Nat.strong_induction_on
eq_C_of_natDegree_eq_zero
IsUnit.map
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
lt_of_le_of_lt
eraseLead_natDegree_le
zero_lt_one
Nat.instZeroLEOneClass
eraseLead_coeff_of_ne
ne_of_lt
coeff_eq_zero_of_natDegree_lt
eraseLead_add_monomial_natDegree_leadingCoeff
C_mul_X_pow_eq_monomial
IsNilpotent.isUnit_add_left_of_commute
isNilpotent_C_mul_pow_X_of_isNilpotent
Commute.all
not_isUnit_of_degree_pos_of_isReduced πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
degree
CommSemiring.toSemiring
CommRing.toCommSemiring
IsUnit
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
β€”not_isUnit_of_natDegree_pos_of_isReduced
natDegree_pos_iff_degree_pos
not_isUnit_of_natDegree_pos_of_isReduced πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
IsUnit
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
β€”LT.lt.ne'
Mathlib.Tactic.Contrapose.contrapose₃

---

← Back to Index