π Source: Mathlib/RingTheory/Polynomial/Nilpotent.lean
coeff_isUnit_isNilpotent_of_isUnit
instIsLocalHomRingHomAlgebraMap
instIsLocalHomRingHomC
isNilpotent_C_iff
isNilpotent_C_mul_pow_X_of_isNilpotent
isNilpotent_X_mul_iff
isNilpotent_aeval_sub_of_isNilpotent_sub
isNilpotent_iff
isNilpotent_monomial_iff
isNilpotent_mul_X_iff
isNilpotent_pow_X_mul_C_of_isNilpotent
isNilpotent_reflect_iff
isNilpotent_reverse_iff
isUnit_C_add_X_mul_iff
isUnit_aeval_of_isUnit_aeval_of_isNilpotent_sub
isUnit_iff'
isUnit_iff_coeff_isUnit_isNilpotent
isUnit_of_coeff_isUnit_isNilpotent
not_isUnit_of_degree_pos_of_isReduced
not_isUnit_of_natDegree_pos_of_isReduced
IsUnit
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
coeff
IsNilpotent
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
IsUnit.exists_right_inv
IsUnit.of_mul_eq_one
instIsDedekindFiniteMonoid
mul_coeff_zero
coeff_one_zero
nilpotent_iff_mem_prime
Ideal.instIsTwoSided_1
Nat.WithBot.add_eq_zero_iff
degree_mul
Ideal.Quotient.noZeroDivisors
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
degree_one
IsDomain.toNontrivial
Ideal.Quotient.isDomain
coeff_eq_zero_of_degree_lt
WithBot.coe_pos
Ne.bot_lt
Ideal.mk_ker
RingHom.mem_ker
coeff_map
coe_mapRingHom
IsLocalHom
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
algebraOfAlgebra
Algebra.id
C
coeff_C
instZero
DFunLike.coe
NonAssocSemiring.toNonUnitalNonAssocSemiring
C_eq_zero
instMul
X
Commute.isNilpotent_mul_right
Commute.symm
commute_X_pow
C_pow
C_0
Commute.isNilpotent_mul_left_iff
commute_X
Commute.mul_pow
MulZeroClass.mul_zero
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
AlgHom
AlgHom.funLike
aeval
Commute.isNilpotent_mul_left
Commute.all
coeff_zero_eq_aeval_zero
eval_pow
eval_add
eval_C
zero_add
eval_zero
coeff_add
coeff_C_zero
coeff_C_succ
add_zero
add_sub_cancel_right
Commute.isNilpotent_sub
coeff_X_zero
coeff_mul_X
sum_monomial_eq
isNilpotent_sum
LinearMap
RingHom.id
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
module
LinearMap.instFunLike
monomial
monomial_pow
natDegree
reflect
le_or_gt
coeff_reflect
revAt_le
Nat.instOrderedSub
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
tsub_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
coeff_eq_zero_of_natDegree_lt
lt_of_le_of_lt
revAt_eq_self_of_lt
reverse
le_refl
instAdd
coeff_X_mul
MulZeroClass.zero_mul
add_sub_cancel
IsNilpotent.isUnit_add_left_of_commute
eval
Ring.toSemiring
divByMonic
modByMonic_add_div
monic_X
modByMonic_X
Nat.strong_induction_on
eq_C_of_natDegree_eq_zero
IsUnit.map
eraseLead_natDegree_le
zero_lt_one
Nat.instZeroLEOneClass
eraseLead_coeff_of_ne
ne_of_lt
eraseLead_add_monomial_natDegree_leadingCoeff
C_mul_X_pow_eq_monomial
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
Nat.instMulZeroClass
degree
natDegree_pos_iff_degree_pos
LT.lt.ne'
Mathlib.Tactic.Contrapose.contraposeβ
---
β Back to Index