Documentation Verification Report

Pochhammer

πŸ“ Source: Mathlib/RingTheory/Polynomial/Pochhammer.lean

Statistics

MetricCount
DefinitionsascPochhammer, descPochhammer
2
Theoremscast_ascFactorial, cast_choose_eq_ascPochhammer_div, cast_choose_eq_descPochhammer_div, cast_descFactorial, cast_factorial, ascPochhammer_eval_cast, ascPochhammer_eval_comp, ascPochhammer_eval_eq_zero_iff, ascPochhammer_eval_neg_coe_nat_of_lt, ascPochhammer_eval_neg_eq_descPochhammer, ascPochhammer_eval_one, ascPochhammer_eval_succ, ascPochhammer_eval_zero, ascPochhammer_evalβ‚‚, ascPochhammer_map, ascPochhammer_mul, ascPochhammer_natDegree, ascPochhammer_nat_eq_ascFactorial, ascPochhammer_nat_eq_descFactorial, ascPochhammer_nat_eq_natCast_ascFactorial, ascPochhammer_nat_eq_natCast_descFactorial, ascPochhammer_nat_eval_succ, ascPochhammer_ne_zero_eval_zero, ascPochhammer_one, ascPochhammer_pos, ascPochhammer_succ_comp_X_add_one, ascPochhammer_succ_eval, ascPochhammer_succ_left, ascPochhammer_succ_right, ascPochhammer_zero, ascPochhammer_zero_eval_zero, descPochhammer_eq_ascPochhammer, descPochhammer_eval_cast, descPochhammer_eval_coe_nat_of_lt, descPochhammer_eval_eq_ascPochhammer, descPochhammer_eval_eq_descFactorial, descPochhammer_eval_eq_prod_range, descPochhammer_eval_zero, descPochhammer_int_eq_ascFactorial, descPochhammer_map, descPochhammer_mul, descPochhammer_natDegree, descPochhammer_ne_zero_eval_zero, descPochhammer_nonneg, descPochhammer_one, descPochhammer_pos, descPochhammer_succ_comp_X_sub_one, descPochhammer_succ_eval, descPochhammer_succ_left, descPochhammer_succ_right, descPochhammer_zero, descPochhammer_zero_eval_zero, factorial_mul_ascPochhammer, monic_ascPochhammer, monic_descPochhammer, monotoneOn_descPochhammer_eval, pow_le_descPochhammer_eval
57
Total59

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
cast_ascFactorial πŸ“–mathematicalβ€”AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
ascFactorial
Polynomial.eval
ascPochhammer
β€”ascPochhammer_nat_eq_ascFactorial
ascPochhammer_eval_cast
cast_choose_eq_ascPochhammer_div πŸ“–mathematicalβ€”AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
choose
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Polynomial.eval
ascPochhammer
factorial
β€”eq_div_iff_mul_eq
cast_ne_zero
factorial_ne_zero
cast_mul
mul_comm
descFactorial_eq_factorial_mul_choose
cast_descFactorial
cast_choose_eq_descPochhammer_div πŸ“–mathematicalβ€”AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
choose
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Polynomial.eval
Ring.toSemiring
descPochhammer
factorial
β€”eq_div_iff_mul_eq
cast_ne_zero
factorial_ne_zero
cast_mul
mul_comm
descFactorial_eq_factorial_mul_choose
descPochhammer_eval_eq_descFactorial
cast_descFactorial πŸ“–mathematicalβ€”AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
descFactorial
Polynomial.eval
ascPochhammer
β€”ascPochhammer_eval_cast
ascPochhammer_nat_eq_descFactorial
cast_one
zero_tsub
instCanonicallyOrderedAdd
instOrderedSub
tsub_zero
add_zero
le_total
descFactorial_of_lt
tsub_eq_zero_iff_le
zero_add
le_refl
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
cast_factorial πŸ“–mathematicalβ€”AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
factorial
Polynomial.eval
AddMonoidWithOne.toOne
ascPochhammer
β€”one_ascFactorial
cast_ascFactorial
cast_one

(root)

Definitions

NameCategoryTheorems
ascPochhammer πŸ“–CompOp
54 mathmath: ascPochhammer_ne_zero_eval_zero, ordinaryHypergeometric_sum_eq, Polynomial.ascPochhammer_smeval_neg_eq_descPochhammer, Nat.cast_factorial, Nat.cast_choose_eq_ascPochhammer_div, ascPochhammer_one, ascPochhammer_succ_eval, ascPochhammer_eval_one, Nat.cast_ascFactorial, ascPochhammer_nat_eq_descFactorial, ascPochhammer_succ_comp_X_add_one, ascPochhammer_eval_zero, ascPochhammer_mul, PadicInt.norm_ascPochhammer_le, ordinaryHypergeometricSeries_apply_eq', ascPochhammer_nat_eq_natCast_descFactorial, Ring.factorial_nsmul_multichoose_eq_ascPochhammer, ascPochhammer_eval_eq_zero_iff, descPochhammer_eq_ascPochhammer, ascPochhammer_map, ordinaryHypergeometric_eq_tsum, monic_ascPochhammer, Ring.ascPochhammer_succ_succ, ordinaryHypergeometricSeries_apply_eq, BinomialRing.factorial_nsmul_multichoose, ascPochhammer_nat_eval_succ, ascPochhammer_natDegree, Ring.smeval_ascPochhammer_int_ofNat, ascPochhammer_eval_neg_coe_nat_of_lt, ascPochhammer_zero, Ring.smeval_ascPochhammer_nat_cast, ascPochhammer_pos, Polynomial.ascPochhammer_smeval_cast, ascPochhammer_eval_comp, Ring.smeval_ascPochhammer_neg_add, descPochhammer_eval_eq_ascPochhammer, ascPochhammer_zero_eval_zero, ascPochhammer_nat_eq_natCast_ascFactorial, ascPochhammer_eval_succ, Ring.smeval_ascPochhammer_succ_neg, Polynomial.ascPochhammer_smeval_eq_eval, ascPochhammer_eval_cast, Ring.smeval_ascPochhammer_neg_of_lt, ascPochhammer_nat_eq_ascFactorial, bernsteinPolynomial.iterate_derivative_at_0, Polynomial.descPochhammer_smeval_eq_ascPochhammer, Ring.smeval_ascPochhammer_self_neg, ascPochhammer_succ_left, ascPochhammer_evalβ‚‚, ascPochhammer_eval_neg_eq_descPochhammer, Nat.cast_descFactorial, ascPochhammer_succ_right, bernsteinPolynomial.iterate_derivative_at_1, factorial_mul_ascPochhammer
descPochhammer πŸ“–CompOp
42 mathmath: Polynomial.ascPochhammer_smeval_neg_eq_descPochhammer, descPochhammer_succ_comp_X_sub_one, differentiable_descPochhammer_eval, Ring.choose_eq_smul, descPochhammer_one, descPochhammer_ne_zero_eval_zero, monotoneOn_descPochhammer_eval, descPochhammer_eval_div_factorial_le_sum_choose, descPochhammer_succ_right, descPochhammer_eval_cast, LaurentSeries.derivative_iterate_coeff, Polynomial.descPochhammer_smeval_eq_descFactorial, descPochhammer_eval_le_sum_descFactorial, descPochhammer_map, monotoneOn_deriv_descPochhammer_eval, Ring.descPochhammer_smeval_add, descPochhammer_eq_ascPochhammer, descPochhammer_nonneg, Nat.cast_choose_eq_descPochhammer_div, convexOn_descPochhammer_eval, descPochhammer_succ_left, descPochhammer_mul, descPochhammer_int_eq_ascFactorial, descPochhammer_natDegree, descPochhammer_eval_eq_descFactorial, monic_descPochhammer, descPochhammer_eval_coe_nat_of_lt, pow_le_descPochhammer_eval, descPochhammer_pos, descPochhammer_eval_eq_ascPochhammer, descPochhammer_eval_eq_prod_range, Real.iter_deriv_rpow_const, descPochhammer_succ_eval, continuous_descPochhammer_eval, Ring.descPochhammer_eq_factorial_smul_choose, deriv_descPochhammer_eval_eq_sum_prod_range_erase, Ring.descPochhammer_succ_succ_smeval, descPochhammer_zero_eval_zero, descPochhammer_eval_zero, Polynomial.descPochhammer_smeval_eq_ascPochhammer, descPochhammer_zero, ascPochhammer_eval_neg_eq_descPochhammer

Theorems

NameKindAssumesProvesValidatesDepends On
ascPochhammer_eval_cast πŸ“–mathematicalβ€”AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
Polynomial.eval
Nat.instSemiring
ascPochhammer
β€”ascPochhammer_map
Polynomial.eval_map
eq_natCast
RingHom.instRingHomClass
Polynomial.evalβ‚‚_at_natCast
Nat.cast_id
ascPochhammer_eval_comp πŸ“–mathematicalβ€”Polynomial.eval
Polynomial.comp
ascPochhammer
Polynomial.map
CommSemiring.toSemiring
algebraMap
Polynomial.evalβ‚‚
β€”ascPochhammer_evalβ‚‚
Polynomial.evalβ‚‚_comp'
ascPochhammer_map
Polynomial.map_comp
Polynomial.eval_map
ascPochhammer_eval_eq_zero_iff πŸ“–mathematicalβ€”Polynomial.eval
Ring.toSemiring
ascPochhammer
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”Polynomial.eval_one
NeZero.one
IsDomain.toNontrivial
mul_eq_zero
IsDomain.to_noZeroDivisors
ascPochhammer_succ_eval
lt_add_one
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
eq_neg_of_add_eq_zero_right
neg_neg
ascPochhammer_eval_neg_coe_nat_of_lt
ascPochhammer_eval_neg_coe_nat_of_lt πŸ“–mathematicalβ€”Polynomial.eval
Ring.toSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
ascPochhammer
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”ascPochhammer_succ_eval
lt_trichotomy
MulZeroClass.zero_mul
neg_add_cancel
MulZeroClass.mul_zero
ascPochhammer_eval_neg_eq_descPochhammer πŸ“–mathematicalβ€”Polynomial.eval
Ring.toSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
ascPochhammer
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
descPochhammer
β€”ascPochhammer_zero
descPochhammer_zero
Polynomial.eval_one
pow_zero
mul_one
ascPochhammer_succ_right
mul_add
Distrib.leftDistribClass
Polynomial.eval_add
Polynomial.eval_mul_X
Nat.cast_comm
Polynomial.eval_natCast_mul
mul_assoc
descPochhammer_succ_right
mul_sub
Polynomial.eval_sub
pow_add
pow_one
neg_one_mul
neg_mul_eq_mul_neg
sub_eq_add_neg
neg_neg
ascPochhammer_eval_one πŸ“–mathematicalβ€”Polynomial.eval
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
ascPochhammer
AddMonoidWithOne.toNatCast
Nat.factorial
β€”Nat.cast_one
ascPochhammer_nat_eq_ascFactorial
Nat.one_ascFactorial
ascPochhammer_eval_succ πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Polynomial.eval
Distrib.toAdd
AddMonoidWithOne.toOne
ascPochhammer
β€”Nat.cast_one
ascPochhammer_nat_eval_succ
ascPochhammer_eval_zero πŸ“–mathematicalβ€”Polynomial.eval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
ascPochhammer
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Polynomial.eval_one
ascPochhammer_succ_left
Polynomial.X_mul
Polynomial.eval_mul_X
MulZeroClass.mul_zero
ascPochhammer_evalβ‚‚ πŸ“–mathematicalβ€”Polynomial.eval
ascPochhammer
Polynomial.evalβ‚‚
β€”ascPochhammer_map
Polynomial.eval_map
ascPochhammer_map πŸ“–mathematicalβ€”Polynomial.map
ascPochhammer
β€”Polynomial.map_one
ascPochhammer_succ_left
Polynomial.map_mul
Polynomial.map_X
Polynomial.map_comp
Polynomial.map_add
ascPochhammer_mul πŸ“–mathematicalβ€”Polynomial
Polynomial.instMul
ascPochhammer
Polynomial.comp
Polynomial.instAdd
Polynomial.X
Polynomial.instNatCast
β€”Polynomial.one_comp
mul_one
add_zero
ascPochhammer_succ_right
Polynomial.mul_X_add_natCast_comp
mul_assoc
add_assoc
Nat.cast_add
ascPochhammer_natDegree πŸ“–mathematicalβ€”Polynomial.natDegree
ascPochhammer
β€”Polynomial.natDegree_one
Polynomial.natDegree_X_add_C
ascPochhammer_succ_right
Polynomial.natDegree_mul
NeZero.one
Polynomial.nontrivial
Polynomial.ne_zero_of_natDegree_gt
ascPochhammer_nat_eq_ascFactorial πŸ“–mathematicalβ€”Polynomial.eval
Nat.instSemiring
ascPochhammer
Nat.ascFactorial
β€”ascPochhammer_zero
Polynomial.eval_one
Nat.ascFactorial_zero
ascPochhammer_succ_right
Polynomial.eval_mul
Polynomial.eval_add
Polynomial.eval_X
Polynomial.eval_natCast
Nat.cast_id
Nat.ascFactorial_succ
mul_comm
ascPochhammer_nat_eq_descFactorial πŸ“–mathematicalβ€”Polynomial.eval
Nat.instSemiring
ascPochhammer
Nat.descFactorial
β€”ascPochhammer_nat_eq_ascFactorial
Nat.add_descFactorial_eq_ascFactorial'
ascPochhammer_nat_eq_natCast_ascFactorial πŸ“–mathematicalβ€”Polynomial.eval
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
ascPochhammer
Nat.ascFactorial
β€”ascPochhammer_nat_eq_ascFactorial
ascPochhammer_nat_eq_natCast_descFactorial πŸ“–mathematicalβ€”Polynomial.eval
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
ascPochhammer
Nat.descFactorial
β€”ascPochhammer_nat_eq_descFactorial
ascPochhammer_nat_eval_succ πŸ“–mathematicalβ€”Polynomial.eval
Nat.instSemiring
ascPochhammer
β€”zero_add
MulZeroClass.zero_mul
ascPochhammer_eval_zero
MulZeroClass.mul_zero
ascPochhammer_nat_eq_ascFactorial
Nat.succ_ascFactorial
add_right_comm
ascPochhammer_ne_zero_eval_zero πŸ“–mathematicalβ€”Polynomial.eval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
ascPochhammer
β€”ascPochhammer_eval_zero
ascPochhammer_one πŸ“–mathematicalβ€”ascPochhammer
Polynomial.X
β€”Polynomial.one_comp
mul_one
ascPochhammer_pos πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Polynomial.eval
ascPochhammer
β€”Polynomial.eval_one
zero_lt_one
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
ascPochhammer_succ_right
mul_add
Distrib.leftDistribClass
Polynomial.eval_add
Nat.cast_comm
Polynomial.eval_natCast_mul
Polynomial.eval_mul_X
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
lt_of_lt_of_le
le_add_of_nonneg_right
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
Nat.cast_nonneg
ascPochhammer_succ_comp_X_add_one πŸ“–mathematicalβ€”Polynomial.comp
ascPochhammer
Polynomial
Polynomial.instAdd
Polynomial.X
Polynomial.instOne
Polynomial.instNSMul
β€”ascPochhammer_succ_left
add_mul
Distrib.rightDistribClass
ascPochhammer_succ_right
Polynomial.mul_comp
mul_comm
Polynomial.add_comp
Polynomial.X_comp
Polynomial.natCast_comp
add_comm
add_assoc
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.zero_mul
nsmul_eq_mul
Nat.cast_add
Polynomial.map_comp
ascPochhammer_map
Polynomial.map_add
Polynomial.map_X
Polynomial.map_one
Polynomial.map_mul
Polynomial.map_natCast
ascPochhammer_succ_eval πŸ“–mathematicalβ€”Polynomial.eval
ascPochhammer
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toAdd
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”ascPochhammer_succ_right
mul_add
Distrib.leftDistribClass
Polynomial.eval_add
Polynomial.eval_mul_X
Nat.cast_comm
Polynomial.C_eq_natCast
Polynomial.eval_C_mul
ascPochhammer_succ_left πŸ“–mathematicalβ€”ascPochhammer
Polynomial
Polynomial.instMul
Polynomial.X
Polynomial.comp
Polynomial.instAdd
Polynomial.instOne
β€”ascPochhammer.eq_2
ascPochhammer_succ_right πŸ“–mathematicalβ€”ascPochhammer
Polynomial
Polynomial.instMul
Polynomial.instAdd
Polynomial.X
Polynomial.instNatCast
β€”zero_add
ascPochhammer_one
CharP.cast_eq_zero
Polynomial.charP
CharP.ofCharZero
Nat.instCharZero
add_zero
one_mul
ascPochhammer_succ_left
Polynomial.mul_comp
mul_assoc
Polynomial.add_comp
Polynomial.X_comp
Polynomial.natCast_comp
add_assoc
add_comm
Nat.cast_succ
ascPochhammer_map
Polynomial.map_mul
Polynomial.map_add
Polynomial.map_X
Polynomial.map_natCast
ascPochhammer_zero πŸ“–mathematicalβ€”ascPochhammer
Polynomial
Polynomial.instOne
β€”β€”
ascPochhammer_zero_eval_zero πŸ“–mathematicalβ€”Polynomial.eval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
ascPochhammer
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Polynomial.eval_one
descPochhammer_eq_ascPochhammer πŸ“–mathematicalβ€”descPochhammer
Int.instRing
Polynomial.comp
Int.instSemiring
ascPochhammer
Polynomial
Polynomial.instAdd
Polynomial.instSub
Polynomial.X
Polynomial.instNatCast
Polynomial.instOne
β€”descPochhammer_zero
ascPochhammer_zero
Polynomial.one_comp
Nat.cast_succ
sub_add
add_sub_cancel_right
descPochhammer_succ_right
ascPochhammer_succ_left
Polynomial.X_mul
Polynomial.mul_X_comp
Polynomial.comp_assoc
Polynomial.add_comp
Polynomial.X_comp
descPochhammer_eval_cast πŸ“–mathematicalβ€”AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
Polynomial.eval
Ring.toSemiring
Int.instRing
descPochhammer
β€”descPochhammer_map
Polynomial.eval_map
eq_intCast
RingHom.instRingHomClass
Polynomial.evalβ‚‚_at_intCast
descPochhammer_eval_coe_nat_of_lt πŸ“–mathematicalβ€”Polynomial.eval
Ring.toSemiring
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
descPochhammer
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”descPochhammer_eval_eq_ascPochhammer
sub_add_eq_add_sub
Nat.cast_add_one
neg_sub
Nat.cast_sub
ascPochhammer_eval_neg_coe_nat_of_lt
descPochhammer_eval_eq_ascPochhammer πŸ“–mathematicalβ€”Polynomial.eval
Ring.toSemiring
descPochhammer
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
AddMonoidWithOne.toOne
ascPochhammer
β€”descPochhammer_zero
Polynomial.eval_one
ascPochhammer_zero
Nat.cast_succ
sub_add
add_sub_cancel_right
descPochhammer_succ_eval
ascPochhammer_succ_left
Polynomial.X_mul
Polynomial.eval_mul_X
Polynomial.map_add
Polynomial.map_X
Polynomial.map_one
ascPochhammer_eval_comp
Polynomial.evalβ‚‚_add
Polynomial.evalβ‚‚_X
Polynomial.evalβ‚‚_one
descPochhammer_eval_eq_descFactorial πŸ“–mathematicalβ€”Polynomial.eval
Ring.toSemiring
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
descPochhammer
Nat.descFactorial
β€”descPochhammer_zero
Polynomial.eval_one
Nat.descFactorial_zero
Nat.cast_one
descPochhammer_succ_right
Nat.descFactorial_succ
mul_sub
Polynomial.eval_sub
Polynomial.eval_mul_X
Nat.cast_comm
Polynomial.eval_natCast_mul
sub_mul
Nat.descFactorial_eq_zero_iff_lt
Nat.cast_zero
MulZeroClass.mul_zero
Nat.cast_mul
Nat.cast_sub
descPochhammer_eval_eq_prod_range πŸ“–mathematicalβ€”Polynomial.eval
Ring.toSemiring
CommRing.toRing
descPochhammer
Finset.prod
CommRing.toCommMonoid
Finset.range
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
β€”Polynomial.eval_one
descPochhammer_succ_right
Polynomial.eval_mul
Polynomial.eval_sub
Polynomial.eval_X
Polynomial.eval_natCast
descPochhammer_eval_zero πŸ“–mathematicalβ€”Polynomial.eval
Ring.toSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
descPochhammer
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”Polynomial.eval_one
descPochhammer_succ_left
Polynomial.X_mul
Polynomial.eval_mul_X
MulZeroClass.mul_zero
descPochhammer_int_eq_ascFactorial πŸ“–mathematicalβ€”Polynomial.eval
Ring.toSemiring
Int.instRing
descPochhammer
Nat.ascFactorial
β€”Nat.cast_add
descPochhammer_eval_eq_descFactorial
Nat.add_descFactorial_eq_ascFactorial
descPochhammer_map πŸ“–mathematicalβ€”Polynomial.map
Ring.toSemiring
descPochhammer
β€”Polynomial.map_one
descPochhammer_succ_left
Polynomial.map_mul
Polynomial.map_X
Polynomial.map_comp
Polynomial.map_sub
descPochhammer_mul πŸ“–mathematicalβ€”Polynomial
Ring.toSemiring
Polynomial.instMul
descPochhammer
Polynomial.comp
Polynomial.instSub
Polynomial.X
Polynomial.instNatCast
β€”Polynomial.one_comp
mul_one
add_zero
descPochhammer_succ_right
Polynomial.mul_X_sub_intCast_comp
mul_assoc
add_assoc
Nat.cast_add
sub_add_eq_sub_sub
descPochhammer_natDegree πŸ“–mathematicalβ€”Polynomial.natDegree
Ring.toSemiring
descPochhammer
β€”Polynomial.natDegree_one
Polynomial.natDegree_X_sub_C
descPochhammer_succ_right
Polynomial.natDegree_mul
NeZero.one
Polynomial.nontrivial
Polynomial.ne_zero_of_natDegree_gt
descPochhammer_ne_zero_eval_zero πŸ“–mathematicalβ€”Polynomial.eval
Ring.toSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
descPochhammer
β€”descPochhammer_eval_zero
descPochhammer_nonneg πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
AddMonoidWithOne.toOne
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Polynomial.eval
Ring.toSemiring
descPochhammer
β€”eq_or_lt_of_le
descPochhammer_eval_eq_ascPochhammer
sub_sub_cancel_left
neg_add_cancel
ascPochhammer_eval_zero
Mathlib.Meta.Positivity.ite_nonneg_of_pos_of_nonneg
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.Positivity.nonneg_of_isNat
Nat.cast_zero
LT.lt.le
descPochhammer_pos
descPochhammer_one πŸ“–mathematicalβ€”descPochhammer
Polynomial.X
Ring.toSemiring
β€”Polynomial.one_comp
mul_one
descPochhammer_pos πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
AddMonoidWithOne.toOne
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Polynomial.eval
Ring.toSemiring
descPochhammer
β€”descPochhammer_eval_eq_ascPochhammer
ascPochhammer_pos
sub_add
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
descPochhammer_succ_comp_X_sub_one πŸ“–mathematicalβ€”Polynomial.comp
Ring.toSemiring
descPochhammer
Polynomial
Polynomial.instSub
Polynomial.X
Polynomial.instOne
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Polynomial.ring
DistribSMul.toSMulZeroClass
instDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Polynomial.instAdd
Polynomial.instNatCast
β€”descPochhammer_succ_left
sub_mul
descPochhammer_succ_right
Polynomial.mul_comp
mul_comm
Polynomial.sub_comp
Polynomial.X_comp
Polynomial.natCast_comp
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_congr
Polynomial.map_comp
descPochhammer_map
Polynomial.map_sub
Polynomial.map_X
Polynomial.map_one
Polynomial.map_mul
Polynomial.map_add
Polynomial.map_natCast
descPochhammer_succ_eval πŸ“–mathematicalβ€”Polynomial.eval
Ring.toSemiring
descPochhammer
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
β€”descPochhammer_succ_right
mul_sub
Polynomial.eval_sub
Polynomial.eval_mul_X
Nat.cast_comm
Polynomial.C_eq_natCast
Polynomial.eval_C_mul
descPochhammer_succ_left πŸ“–mathematicalβ€”descPochhammer
Polynomial
Ring.toSemiring
Polynomial.instMul
Polynomial.X
Polynomial.comp
Polynomial.instSub
Polynomial.instOne
β€”descPochhammer.eq_2
descPochhammer_succ_right πŸ“–mathematicalβ€”descPochhammer
Polynomial
Ring.toSemiring
Polynomial.instMul
Polynomial.instSub
Polynomial.X
Polynomial.instNatCast
β€”Polynomial.one_comp
mul_one
CharP.cast_eq_zero
Polynomial.charP
CharP.ofCharZero
Int.instCharZero
sub_zero
one_mul
descPochhammer_succ_left
Polynomial.mul_comp
mul_assoc
Polynomial.sub_comp
Polynomial.X_comp
Polynomial.natCast_comp
Nat.cast_add
Nat.cast_one
sub_add_eq_sub_sub_swap
descPochhammer_map
Polynomial.map_mul
Polynomial.map_sub
Polynomial.map_X
Polynomial.map_natCast
descPochhammer_zero πŸ“–mathematicalβ€”descPochhammer
Polynomial
Ring.toSemiring
Polynomial.instOne
β€”β€”
descPochhammer_zero_eval_zero πŸ“–mathematicalβ€”Polynomial.eval
Ring.toSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
descPochhammer
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”Polynomial.eval_one
factorial_mul_ascPochhammer πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Nat.factorial
Polynomial.eval
Distrib.toAdd
AddMonoidWithOne.toOne
ascPochhammer
β€”Nat.cast_one
ascPochhammer_nat_eq_ascFactorial
Nat.factorial_mul_ascFactorial
monic_ascPochhammer πŸ“–mathematicalβ€”Polynomial.Monic
ascPochhammer
β€”Polynomial.leadingCoeff_X_add_C
ascPochhammer_succ_left
Polynomial.Monic.def
Polynomial.leadingCoeff_mul
Polynomial.leadingCoeff_comp
ne_zero_of_eq_one
Polynomial.natDegree_X_add_C
Polynomial.monic_X
one_mul
one_pow
monic_descPochhammer πŸ“–mathematicalβ€”Polynomial.Monic
Ring.toSemiring
descPochhammer
β€”Polynomial.leadingCoeff_X_sub_C
ne_zero_of_eq_one
Polynomial.natDegree_X_sub_C
descPochhammer_succ_left
Polynomial.Monic.def
Polynomial.leadingCoeff_mul
Polynomial.leadingCoeff_comp
Polynomial.monic_X
one_mul
one_pow
monotoneOn_descPochhammer_eval πŸ“–mathematicalβ€”MonotoneOn
PartialOrder.toPreorder
Polynomial.eval
Ring.toSemiring
descPochhammer
Set.Ici
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
AddMonoidWithOne.toOne
β€”Polynomial.eval_one
CharP.cast_eq_zero
CharP.ofCharZero
IsStrictOrderedRing.toCharZero
zero_sub
LE.le.trans
sub_le_self
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
zero_le_one
IsStrictOrderedRing.toZeroLEOneClass
add_sub_cancel_right
Nat.cast_add_one
Set.mem_Ici
descPochhammer_succ_eval
mul_le_mul
IsOrderedRing.toPosMulMono
IsOrderedRing.toMulPosMono
sub_le_sub_right
covariant_swap_add_of_covariant_add
sub_nonneg_of_le
descPochhammer_nonneg
pow_le_descPochhammer_eval πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
AddMonoidWithOne.toOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Polynomial.eval
descPochhammer
β€”CharP.cast_eq_zero
CharP.ofCharZero
IsStrictOrderedRing.toCharZero
sub_zero
pow_zero
Polynomial.eval_one
LE.le.trans
sub_le_self
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
zero_le_one
IsStrictOrderedRing.toZeroLEOneClass
le_of_sub_nonneg
covariant_swap_add_of_covariant_add
sub_nonneg
add_sub_cancel_right
Nat.cast_add_one
pow_succ
descPochhammer_succ_eval
sub_add
mul_le_mul
IsOrderedRing.toPosMulMono
IsOrderedRing.toMulPosMono
LE.le.trans'
pow_le_pow_leftβ‚€
le_add_of_nonneg_right
le_rfl
descPochhammer_nonneg

---

← Back to Index