π Source: Mathlib/RingTheory/Polynomial/Resultant/Basic.lean
adjSylvester
disc
discr
resultant
sylvester
sylvesterDeriv
sylvesterMap
adjSylvester_comp_sylveserMap
disc_C
disc_of_degree_eq_one
disc_of_degree_eq_three
disc_of_degree_eq_two
discr_C
discr_of_degree_eq_one
discr_of_degree_eq_three
discr_of_degree_eq_two
exists_mul_add_mul_eq_C_resultant
induction_of_Splits_of_injective_of_surjective
isUnit_resultant_iff_isCoprime
resultant_C_left
resultant_C_mul_left
resultant_C_mul_right
resultant_C_right
resultant_C_zero_left
resultant_C_zero_right
resultant_X_add_C_left
resultant_X_add_C_right
resultant_X_pow_left
resultant_X_pow_right
resultant_X_sub_C_left
resultant_X_sub_C_pow_left
resultant_X_sub_C_pow_right
resultant_X_sub_C_right
resultant_add_left_deg
resultant_add_mul_left
resultant_add_mul_right
resultant_add_right_deg
resultant_comm
resultant_deriv
resultant_dvd_leadingCoeff_pow
resultant_eq_prod_eval
resultant_eq_prod_roots_sub
resultant_eq_zero_iff
resultant_eq_zero_of_lt_lt
resultant_integralNormalization
resultant_map_map
resultant_mul_left
resultant_mul_right
resultant_ne_zero
resultant_one_left
resultant_one_right
resultant_pow_left
resultant_pow_right
resultant_prod_left
resultant_prod_right
resultant_scaleRoots
resultant_self
resultant_self_eq_zero
resultant_succ_left_deg
resultant_taylor
resultant_zero_left
resultant_zero_left_deg
resultant_zero_right
resultant_zero_right_deg
resultant_zero_zero
sylveserMap_comp_adjSylvester
sylvesterDeriv_updateRow
sylvesterMap_apply_coe
sylvester_comm
sylvester_map_map
sylvester_zero_left_deg
toMatrix_sylvesterMap
toMatrix_sylvesterMap'
UniversalFactorizationRing.jacobian_resentation
MvPolynomial.universalFactorizationMapPresentation_jacobian
MvPolynomial.universalFactorizationMapPresentation_jacobiMatrix
natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
LinearMap.comp
Polynomial
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
module
Semiring.toModule
SetLike.instMembership
Submodule.setLike
degreeLT
Prod.instAddCommMonoid
Submodule.addCommMonoid
Prod.instModule
Submodule.module
RingHom.id
RingHomCompTriple.ids
LinearMap
LinearMap.instSMul
Prod.distribSMul
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Submodule.addCommGroup
CommRing.toRing
Ring.toAddCommGroup
ring
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Prod.smulCommClass
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
DistribSMul.toSMulZeroClass
smulCommClass_self
CommRing.toCommMonoid
CommMonoid.toMonoid
Ring.toSemiring
LinearMap.id
RingHomInvPair.ids
Finite.of_fintype
Matrix.adjugate_mul
resultant.eq_1
Matrix.toLin_one
map_smul
SemilinearMapClass.toMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
Matrix.toLin_toMatrix
Matrix.toLin_mul
DFunLike.coe
RingHom
RingHom.instFunLike
C
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
degree
WithBot
WithBot.one
Nat.instOne
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
SubNegMonoid.toSub
AddGroupWithOne.toAddGroup
Distrib.toMul
Monoid.toNatPow
coeff
natDegree_C
zero_tsub
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
add_zero
Matrix.det_reindex_self
Matrix.det.congr_simp
Matrix.submatrix_empty
Matrix.det_fin_zero
MulZeroClass.mul_zero
pow_zero
mul_one
degree_eq_iff_natDegree_eq_of_pos
one_pos
Nat.instZeroLEOneClass
Nat.cast_one
Matrix.ext
mul_comm
one_mul
tsub_self
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instCharZero
Matrix.updateRow_self
Matrix.cons_val'
Matrix.cons_val_fin_one
Matrix.det_unique
natDegree_eq_of_degree_eq_some
discr.eq_1
Matrix.det_succ_row_zero
Finset.sum_congr
Matrix.submatrix_submatrix
Matrix.det_fin_three
Finset.sum_fin_eq_sum_range
Finset.sum_range_succ
Finset.sum_singleton
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
zero_add
pow_one
neg_mul
Even.neg_pow
one_pow
sub_zero
MulZeroClass.zero_mul
sub_self
zero_sub
mul_neg
neg_neg
neg_zero
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Meta.NormNum.isInt_pow
Mathlib.Meta.NormNum.intPow_negOfNat_bit1
Mathlib.Meta.NormNum.one_natPow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.RingNF.nat_rawCast_1
Mathlib.Tactic.RingNF.mul_assoc_rev
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
Mathlib.Tactic.RingNF.add_assoc_rev
Mathlib.Tactic.RingNF.add_neg
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
two_pos
Nat.cast_two
Fintype.complete
coeff_derivative
Matrix.updateRow_ne
Matrix.updateRow.congr_simp
Nat.cast_zero
one_add_one_eq_two
tsub_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_natDiv
Mathlib.Meta.NormNum.isNat_natSub
Mathlib.Tactic.Ring.pow_one_cast
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
instAdd
instMul
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
degree_of_subsingleton
Unique.instSubsingleton
degree_one
IsStrictOrderedRing.noZeroDivisors
CanonicallyOrderedAdd.toExistsAddOfLE
WithBot.instIsOrderedRing
WithBot.nontrivial
SMulMemClass.smul_mem
Submodule.smulMemClass
Algebra.smul_def
Submodule.isScalarTower'
isScalarTower
IsScalarTower.right
Mathlib.Tactic.TermCongr.cHole.congr_simp
EuclideanDomain.toCommRing
Field.toEuclideanDomain
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
instIsDomain
Field.toIsField
SplittingField.splits
FaithfulSMul.algebraMap_injective
FractionRing.instFaithfulSMul
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.self
IsDomain.toNontrivial
MvPolynomial.evalβ_X
MvPolynomial.instIsDomainOfIsCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
Int.instIsDomain
Monic
IsUnit
IsCoprime
commSemiring
natDegree_one
coeff_one_zero
eq_one_of_monic_natDegree_zero
le_rfl
mul_assoc
Distrib.leftDistribClass
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
IsUnit.val_inv_mul
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
eq_or_ne
Monic.leadingCoeff
RingHom.map_one
add_comm
LE.le.trans_lt
natDegree_mul_le
natDegree_add_eq_left_of_natDegree_lt
Monic.natDegree_mul'
isUnit_iff_exists_inv'
instIsDedekindFiniteMonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
coeff_C_zero
mul_left_comm
mul_pow
neg_one_mul
Matrix.updateCol.congr_simp
Matrix.updateCol_apply
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
coeff_C_mul
mul_ite
Nat.instNoMaxOrder
pow_succ'
Matrix.det_updateCol_smul
Matrix.updateCol_eq_self
X
eval
map_neg
RingHomClass.toAddMonoidHomClass
sub_neg_eq_add
map_zero
MonoidWithZeroHomClass.toZeroHomClass
coeff_zero_eq_eval_zero
instSub
natDegree_eq_zero
coeff_sub
coeff_X_one
coeff_C_succ
eval_C
modByMonic_add_div
monic_X_sub_C
natDegree_divByMonic
natDegree_sub_C
natDegree_X
natDegree_X_sub_C_le
modByMonic_X_sub_C_eq_C_eval
natDegree_pow'
leadingCoeff_X_sub_C
NeZero.one
LE.le.trans
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.pow_prod_atom
pow_add
two_mul
pow_mul
Mathlib.Meta.NormNum.intPow_negOfNat_bit0
le_natDegree_of_mem_supp
sum_monomial_eq
sum_eq_of_subset
monomial_zero_right
mul_add
add_assoc
Matrix.det_reindex
Equiv.Perm.sign_eq_prod_prod_Ioi
Finset.prod_congr
Units.coe_prod
Int.cast_prod
Int.cast_one
Int.cast_neg
Equiv.prod_comp
Finset.prod_map_equiv
Equiv.symm_apply_apply
Finset.prod_ite_mem_eq
Fintype.prod_sum_type
Finset.prod_const_one
LT.lt.trans_le
LT.lt.le
Finset.prod_const
Fintype.card_fin
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
LinearMap.instFunLike
derivative
leadingCoeff
natDegree_pos_iff_degree_pos
Matrix.det_updateRow_smul
Matrix.updateRow_eq_self
Nat.two_dvd_mul_add_one
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
IsDomain.to_noZeroDivisors
leadingCoeff_C
isUnit_iff
IsUnit.of_mul_eq_one_right
IsUnit.pow
natDegree_mul
Splits
Multiset.prod
Multiset.map
roots
Multiset.map_congr
roots.congr_simp
roots_zero
Monic.natDegree_eq_zero
roots_one
eval_zero
zero_pow
Multiset.map_const'
Splits.natDegree_eq_card_roots
Multiset.prod_replicate
Monic.map
Splits.map
natDegree_map
coeff_map
coeff_natDegree
map_sub_sprod_roots_eq_prod_map_eval
Splits.roots_map
map_multiset_prod
Multiset.map_map
eval_map_algebraMap
aeval_algebraMap_apply
natDegree_C_mul
instNoZeroDivisors
nontrivial
Monic.eq_1
inv_mul_cancelβ
eval_mul
Multiset.prod_map_mul
inv_pow
mul_inv_cancel_leftβ
isReduced_of_noZeroDivisors
inv_mul_eq_iff_eq_mulβ
Splits.mul
Splits.C
roots_C_mul
natDegree_map_le
map_mul
map_pow
OreLocalization.instIsScalarTower
natDegree_map_eq_of_injective
leadingCoeff_map_of_injective
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivisionRing.toRing
Field.toDivisionRing
SProd.sprod
Multiset
Multiset.instSProd
Nat.strong_induction_on
Monic.ne_zero
natDegree_neg
le_refl
add_neg_cancel
Multiset.product_zero
not_forall_not
Multiset.eq_zero_iff_forall_notMem
Multiset.card_eq_zero
Multiset.prod_eq_zero
Multiset.mem_product
natDegree_modByMonic_lt
leadingCoeff.eq_1
map_C
map_invβ
map_sub_roots_sprod_eq_prod_map_eval
eval_add
Distrib.rightDistribClass
le_of_not_ge
Multiset.map_swap_product
Multiset.card_product
neg_sub
NonUnitalNonAssocSemiring.toMulZeroClass
Semifield.toCommSemiring
isCoprime_mul_unit_left_left
isUnit_C
IsUnit.mul_iff
coeff_eq_zero_of_natDegree_lt
scaleRoots
integralNormalization
natDegree_scaleRoots
natDegree_integralNormalization
integralNormalization_zero
mul_right_injectiveβ
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
integralNormalization_mul_C_leadingCoeff
zero_scaleRoots
mem_lifts_and_degree_eq
map_surjective
natDegree_eq_natDegree
map_scaleRoots
integralNormalization_map
map
RingHom.map_det
le_iff_exists_add
coeff_mul_degree_add_degree
instOne
Finset.card_range
Finset.prod
commRing
Finset.induction
Finset.prod_insert
natDegree_mul'
leadingCoeff_prod'
Finset.prod_mul_distrib
Finset.prod_pow_eq_pow_sum
Finset.mul_sum
natDegree_prod'
scaleRoots_C
scaleRoots_zero
natDegree_mul_X_pow
mul_coeff_zero
coeff_X_pow
Splits.scaleRoots
roots_scaleRoots
isUnit_iff_ne_zero
scaleRoots_eval_mul
leadingCoeff_scaleRoots
map_injective
map_eq_zero_iff
Splits.exists_eval_eq_zero
degree_ne_of_natDegree_ne
Matrix.det_succ_row
Finset.sum_eq_single
Fin.succAbove_last
instIsEmptyFalse
add_tsub_cancel_left
add_right_comm
ite_and
taylor
Submonoid.closure_induction
taylor_C
natDegree_taylor
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
taylor_X
AddMonoidHomClass.toAddHomClass
natDegree_add_C
neg_add_rev
taylor_eval
neg_add_cancel_right
taylor_one
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
taylor_mul
leadingCoeff_taylor
map_taylor
instZero
Matrix.det_diagonal
Fintype.card_congr'
Matrix.det_eq_zero_of_column_eq_zero
Matrix.mul_adjugate
Matrix.updateRow
Function.hasSMul
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
NonUnitalNonAssocSemiring.toDistribSMul
sylvesterDeriv.eq_1
ne_or_eq
Matrix.updateRow_apply
Nat.cast_add
Mathlib.Meta.NormNum.IsNat.to_eq
Equiv
Matrix
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
Nat.instAddCommSemigroup
EquivLike.toFunLike
Equiv.instEquivLike
Matrix.reindex
finCongr
Equiv.trans
Equiv.symm
finSumFinEquiv
Equiv.sumComm
finSumFinEquiv_symm_apply_castAdd
finSumFinEquiv_symm_apply_natAdd
Matrix.nonAssocSemiring
Fin.fintype
RingHom.mapMatrix
Matrix.diagonal
sylvester.eq_1
Matrix.of_apply
Matrix.diagonal_apply
Set.Icc_self
LinearEquiv
LinearMap.addCommMonoid
Matrix.addCommMonoid
LinearMap.module
CommSemiring.toCommMonoid
Matrix.module
DFinsupp.instEquivLikeLinearEquiv
LinearMap.toMatrix
instFintypeSum
Module.Basis.prod
degreeLT.basis
Equiv.refl
LinearMap.toMatrix_apply
Module.Basis.prod_apply
degreeLT.basis_val
coeff_mul_X_pow'
Module.Basis.reindex
Equiv.surjective
Module.Basis.coe_reindex
coeff_add
---
β Back to Index