Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/Polynomial/Resultant/Basic.lean

Statistics

MetricCount
DefinitionsadjSylvester, disc, discr, resultant, sylvester, sylvesterDeriv, sylvesterMap
7
TheoremsadjSylvester_comp_sylveserMap, disc_C, disc_of_degree_eq_one, disc_of_degree_eq_three, disc_of_degree_eq_two, discr_C, discr_of_degree_eq_one, discr_of_degree_eq_three, discr_of_degree_eq_two, exists_mul_add_mul_eq_C_resultant, induction_of_Splits_of_injective_of_surjective, isUnit_resultant_iff_isCoprime, resultant_C_left, resultant_C_mul_left, resultant_C_mul_right, resultant_C_right, resultant_C_zero_left, resultant_C_zero_right, resultant_X_add_C_left, resultant_X_add_C_right, resultant_X_pow_left, resultant_X_pow_right, resultant_X_sub_C_left, resultant_X_sub_C_pow_left, resultant_X_sub_C_pow_right, resultant_X_sub_C_right, resultant_add_left_deg, resultant_add_mul_left, resultant_add_mul_right, resultant_add_right_deg, resultant_comm, resultant_deriv, resultant_dvd_leadingCoeff_pow, resultant_eq_prod_eval, resultant_eq_prod_roots_sub, resultant_eq_zero_iff, resultant_eq_zero_of_lt_lt, resultant_integralNormalization, resultant_map_map, resultant_mul_left, resultant_mul_right, resultant_ne_zero, resultant_one_left, resultant_one_right, resultant_pow_left, resultant_pow_right, resultant_prod_left, resultant_prod_right, resultant_scaleRoots, resultant_self, resultant_self_eq_zero, resultant_succ_left_deg, resultant_taylor, resultant_zero_left, resultant_zero_left_deg, resultant_zero_right, resultant_zero_right_deg, resultant_zero_zero, sylveserMap_comp_adjSylvester, sylvesterDeriv_updateRow, sylvesterMap_apply_coe, sylvester_comm, sylvester_map_map, sylvester_zero_left_deg, toMatrix_sylvesterMap, toMatrix_sylvesterMap'
66
Total73

Polynomial

Definitions

NameCategoryTheorems
adjSylvester πŸ“–CompOp
2 mathmath: adjSylvester_comp_sylveserMap, sylveserMap_comp_adjSylvester
disc πŸ“–CompOpβ€”
discr πŸ“–CompOp
9 mathmath: disc_of_degree_eq_two, disc_of_degree_eq_three, discr_of_degree_eq_one, discr_C, disc_C, resultant_deriv, disc_of_degree_eq_one, discr_of_degree_eq_two, discr_of_degree_eq_three
resultant πŸ“–CompOp
51 mathmath: resultant_X_add_C_right, resultant_one_right, resultant_eq_zero_of_lt_lt, resultant_add_left_deg, resultant_zero_right, resultant_comm, resultant_X_sub_C_right, resultant_X_pow_right, resultant_C_zero_right, resultant_self_eq_zero, UniversalFactorizationRing.jacobian_resentation, resultant_eq_prod_eval, resultant_C_right, resultant_dvd_leadingCoeff_pow, adjSylvester_comp_sylveserMap, isUnit_resultant_iff_isCoprime, resultant_mul_left, resultant_X_sub_C_pow_left, resultant_scaleRoots, resultant_X_sub_C_pow_right, resultant_succ_left_deg, resultant_pow_right, resultant_taylor, resultant_C_left, resultant_add_mul_right, resultant_zero_left, resultant_X_add_C_left, resultant_map_map, resultant_add_right_deg, resultant_eq_prod_roots_sub, resultant_prod_right, resultant_C_zero_left, resultant_deriv, resultant_prod_left, resultant_add_mul_left, resultant_mul_right, resultant_self, resultant_one_left, resultant_X_sub_C_left, resultant_C_mul_left, resultant_pow_left, resultant_X_pow_left, sylveserMap_comp_adjSylvester, resultant_eq_zero_iff, resultant_C_mul_right, resultant_zero_left_deg, resultant_zero_right_deg, resultant_integralNormalization, resultant_zero_zero, exists_mul_add_mul_eq_C_resultant, MvPolynomial.universalFactorizationMapPresentation_jacobian
sylvester πŸ“–CompOp
7 mathmath: toMatrix_sylvesterMap', sylvester_comm, sylvester_zero_left_deg, sylvesterDeriv_updateRow, sylvester_map_map, toMatrix_sylvesterMap, MvPolynomial.universalFactorizationMapPresentation_jacobiMatrix
sylvesterDeriv πŸ“–CompOp
1 mathmath: sylvesterDeriv_updateRow
sylvesterMap πŸ“–CompOp
5 mathmath: toMatrix_sylvesterMap', adjSylvester_comp_sylveserMap, toMatrix_sylvesterMap, sylvesterMap_apply_coe, sylveserMap_comp_adjSylvester

Theorems

NameKindAssumesProvesValidatesDepends On
adjSylvester_comp_sylveserMap πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
LinearMap.comp
Polynomial
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
module
Semiring.toModule
SetLike.instMembership
Submodule.setLike
degreeLT
Prod.instAddCommMonoid
Submodule.addCommMonoid
Prod.instModule
Submodule.module
RingHom.id
RingHomCompTriple.ids
adjSylvester
sylvesterMap
LinearMap
LinearMap.instSMul
Prod.distribSMul
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Submodule.addCommGroup
CommRing.toRing
Ring.toAddCommGroup
ring
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Prod.smulCommClass
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
DistribSMul.toSMulZeroClass
smulCommClass_self
CommRing.toCommMonoid
CommMonoid.toMonoid
Ring.toSemiring
resultant
LinearMap.id
β€”RingHomInvPair.ids
smulCommClass_self
Finite.of_fintype
Matrix.adjugate_mul
RingHomCompTriple.ids
Prod.smulCommClass
resultant.eq_1
Matrix.toLin_one
toMatrix_sylvesterMap'
map_smul
SemilinearMapClass.toMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
Matrix.toLin_toMatrix
Matrix.toLin_mul
disc_C πŸ“–mathematicalβ€”discr
DFunLike.coe
RingHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”discr_C
disc_of_degree_eq_one πŸ“–mathematicaldegree
CommSemiring.toSemiring
CommRing.toCommSemiring
WithBot
WithBot.one
Nat.instOne
discr
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”discr_of_degree_eq_one
disc_of_degree_eq_three πŸ“–mathematicaldegree
CommSemiring.toSemiring
CommRing.toCommSemiring
WithBot
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
discr
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
coeff
AddGroupWithOne.toAddMonoidWithOne
β€”discr_of_degree_eq_three
disc_of_degree_eq_two πŸ“–mathematicaldegree
CommSemiring.toSemiring
CommRing.toCommSemiring
WithBot
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
discr
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
coeff
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddGroupWithOne.toAddMonoidWithOne
β€”discr_of_degree_eq_two
discr_C πŸ“–mathematicalβ€”discr
DFunLike.coe
RingHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”natDegree_C
zero_tsub
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
add_zero
Matrix.det_reindex_self
Matrix.det.congr_simp
Matrix.submatrix_empty
Matrix.det_fin_zero
MulZeroClass.mul_zero
pow_zero
mul_one
discr_of_degree_eq_one πŸ“–mathematicaldegree
CommSemiring.toSemiring
CommRing.toCommSemiring
WithBot
WithBot.one
Nat.instOne
discr
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”degree_eq_iff_natDegree_eq_of_pos
one_pos
Nat.instZeroLEOneClass
Nat.cast_one
Matrix.ext
mul_comm
one_mul
tsub_self
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
Nat.instAtLeastTwoHAddOfNat
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instCharZero
Matrix.updateRow_self
Matrix.cons_val'
Matrix.cons_val_fin_one
Matrix.det_reindex_self
Matrix.det.congr_simp
Matrix.det_unique
MulZeroClass.mul_zero
pow_zero
mul_one
discr_of_degree_eq_three πŸ“–mathematicaldegree
CommSemiring.toSemiring
CommRing.toCommSemiring
WithBot
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
discr
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
coeff
AddGroupWithOne.toAddMonoidWithOne
β€”Nat.instAtLeastTwoHAddOfNat
natDegree_eq_of_degree_eq_some
discr.eq_1
Matrix.det_reindex_self
Matrix.det.congr_simp
one_mul
Matrix.det_succ_row_zero
Finset.sum_congr
Matrix.cons_val'
Matrix.cons_val_fin_one
Matrix.submatrix_submatrix
Matrix.det_fin_three
Finset.sum_fin_eq_sum_range
Finset.sum_range_succ
Finset.sum_singleton
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
pow_zero
zero_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instZeroLEOneClass
Nat.instCharZero
pow_one
neg_mul
Even.neg_pow
one_pow
MulZeroClass.mul_zero
sub_zero
MulZeroClass.zero_mul
add_zero
mul_one
sub_self
zero_sub
mul_neg
neg_neg
neg_zero
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.pow_congr
Nat.cast_one
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Meta.NormNum.isInt_pow
Mathlib.Meta.NormNum.intPow_negOfNat_bit1
Mathlib.Meta.NormNum.one_natPow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.RingNF.nat_rawCast_1
Mathlib.Tactic.RingNF.mul_assoc_rev
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
Mathlib.Tactic.RingNF.add_assoc_rev
Mathlib.Tactic.RingNF.add_neg
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
discr_of_degree_eq_two πŸ“–mathematicaldegree
CommSemiring.toSemiring
CommRing.toCommSemiring
WithBot
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
discr
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
coeff
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddGroupWithOne.toAddMonoidWithOne
β€”Nat.instAtLeastTwoHAddOfNat
degree_eq_iff_natDegree_eq_of_pos
two_pos
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.cast_two
discr.eq_1
Matrix.det_reindex_self
Matrix.ext
Fintype.complete
Nat.instCharZero
Nat.instOrderedSub
coeff_derivative
mul_comm
tsub_self
Nat.instCanonicallyOrderedAdd
Matrix.updateRow_ne
zero_add
Matrix.cons_val'
Matrix.cons_val_fin_one
Matrix.updateRow.congr_simp
Nat.cast_zero
one_mul
one_add_one_eq_two
tsub_zero
Nat.cast_one
Matrix.updateRow_self
Matrix.det.congr_simp
Matrix.det_fin_three
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Meta.NormNum.isNat_natDiv
Mathlib.Meta.NormNum.isNat_natSub
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
Mathlib.Tactic.RingNF.mul_assoc_rev
mul_one
add_zero
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.add_pf_add_gt
exists_mul_add_mul_eq_C_resultant πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Polynomial
instAdd
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
resultant
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
degree_of_subsingleton
Unique.instSubsingleton
degree_one
Nat.instCanonicallyOrderedAdd
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instNontrivial
WithBot.instIsOrderedRing
IsStrictOrderedRing.toIsOrderedRing
WithBot.nontrivial
smulCommClass_self
RingHomCompTriple.ids
sylveserMap_comp_adjSylvester
SMulMemClass.smul_mem
Submodule.smulMemClass
Algebra.smul_def
mul_one
Submodule.isScalarTower'
isScalarTower
IsScalarTower.right
Mathlib.Tactic.TermCongr.cHole.congr_simp
induction_of_Splits_of_injective_of_surjective πŸ“–β€”EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”β€”RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
instIsDomain
Field.toIsField
SplittingField.splits
FaithfulSMul.algebraMap_injective
FractionRing.instFaithfulSMul
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.self
IsDomain.toNontrivial
MvPolynomial.evalβ‚‚_X
MvPolynomial.instIsDomainOfIsCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
Int.instIsDomain
isUnit_resultant_iff_isCoprime πŸ“–mathematicalMonic
CommSemiring.toSemiring
CommRing.toCommSemiring
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
resultant
natDegree
IsCoprime
Polynomial
commSemiring
β€”natDegree_one
resultant_zero_left_deg
coeff_one_zero
one_pow
eq_one_of_monic_natDegree_zero
exists_mul_add_mul_eq_C_resultant
le_rfl
mul_assoc
mul_comm
Distrib.leftDistribClass
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
IsUnit.val_inv_mul
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
resultant_mul_right
eq_or_ne
Monic.leadingCoeff
resultant_one_right
MulZeroClass.zero_mul
zero_add
resultant_C_right
mul_one
RingHom.map_one
add_comm
resultant_add_mul_right
LE.le.trans_lt
natDegree_mul_le
natDegree_add_eq_left_of_natDegree_lt
Monic.natDegree_mul'
isUnit_iff_exists_inv'
instIsDedekindFiniteMonoid
resultant_C_left πŸ“–mathematicalβ€”resultant
DFunLike.coe
RingHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
coeff
β€”zero_add
resultant_add_left_deg
natDegree_C
mul_comm
resultant_zero_left_deg
coeff_C_zero
resultant_C_mul_left πŸ“–mathematicalβ€”resultant
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”resultant_comm
resultant_C_mul_right
mul_left_comm
mul_assoc
mul_comm
mul_pow
neg_one_mul
neg_neg
one_pow
one_mul
resultant_C_mul_right πŸ“–mathematicalβ€”resultant
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”Matrix.det.congr_simp
Nat.instCanonicallyOrderedAdd
pow_zero
one_mul
Matrix.ext
Matrix.updateCol.congr_simp
Matrix.updateCol_apply
eq_or_ne
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
Nat.instZeroLEOneClass
coeff_C_mul
mul_ite
MulZeroClass.mul_zero
Nat.instNoMaxOrder
pow_succ'
mul_assoc
Matrix.det_updateCol_smul
Matrix.updateCol_eq_self
resultant.eq_1
le_rfl
resultant_C_right πŸ“–mathematicalβ€”resultant
DFunLike.coe
RingHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
coeff
β€”zero_add
resultant_add_right_deg
natDegree_C
resultant_zero_right_deg
coeff_C_zero
resultant_C_zero_left πŸ“–mathematicalβ€”resultant
DFunLike.coe
RingHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”resultant_zero_left_deg
coeff_C_zero
resultant_C_zero_right πŸ“–mathematicalβ€”resultant
DFunLike.coe
RingHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”resultant_zero_right_deg
coeff_C_zero
resultant_X_add_C_left πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
resultant
Polynomial
instAdd
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
eval
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
β€”resultant_X_sub_C_left
map_neg
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
sub_neg_eq_add
resultant_X_add_C_right πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
resultant
Polynomial
instAdd
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
eval
β€”resultant_X_sub_C_right
map_neg
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
sub_neg_eq_add
resultant_X_pow_left πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
resultant
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
coeff
β€”map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
sub_zero
coeff_zero_eq_eval_zero
resultant_X_sub_C_pow_left
resultant_X_pow_right πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
resultant
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
coeff
β€”map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
sub_zero
coeff_zero_eq_eval_zero
resultant_X_sub_C_pow_right
resultant_X_sub_C_left πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
resultant
Polynomial
instSub
CommRing.toRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
eval
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
natDegree_eq_zero
resultant_C_right
coeff_sub
coeff_X_one
coeff_C_succ
sub_zero
one_pow
pow_one
one_mul
eval_C
modByMonic_add_div
monic_X_sub_C
resultant_add_mul_right
natDegree_divByMonic
natDegree_sub_C
natDegree_X
natDegree_X_sub_C_le
modByMonic_X_sub_C_eq_C_eval
resultant_X_sub_C_pow_left πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
resultant
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
instSub
CommRing.toRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
eval
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
natDegree_pow'
leadingCoeff_X_sub_C
one_pow
NeZero.one
natDegree_sub_C
natDegree_X
mul_one
resultant_X_sub_C_left
resultant_pow_left
resultant_X_sub_C_pow_right πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
resultant
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
instSub
CommRing.toRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
eval
β€”resultant_comm
resultant_X_sub_C_pow_left
resultant_X_sub_C_right πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
resultant
Polynomial
instSub
CommRing.toRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
eval
β€”resultant_comm
resultant_X_sub_C_left
mul_one
resultant_add_left_deg πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
resultant
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
coeff
β€”add_zero
MulZeroClass.mul_zero
pow_zero
mul_one
one_mul
resultant_succ_left_deg
LE.le.trans
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_one_cast
resultant_add_mul_left πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
resultant
Polynomial
instAdd
instMul
β€”resultant_comm
resultant_add_mul_right
mul_assoc
pow_add
mul_comm
Nat.instAtLeastTwoHAddOfNat
two_mul
pow_mul
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_pow
Mathlib.Meta.NormNum.intPow_negOfNat_bit0
Mathlib.Meta.NormNum.one_natPow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_pow
resultant_add_mul_right πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
resultant
Polynomial
instAdd
instMul
β€”LE.le.trans_lt
le_natDegree_of_mem_supp
sum_monomial_eq
sum_eq_of_subset
monomial_zero_right
le_rfl
MulZeroClass.mul_zero
add_zero
Finset.sum_range_succ
mul_add
Distrib.leftDistribClass
add_assoc
resultant_add_right_deg πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
resultant
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
coeff
β€”resultant_comm
resultant_add_left_deg
mul_assoc
mul_left_comm
mul_comm
Distrib.leftDistribClass
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
Mathlib.Tactic.RingNF.int_rawCast_neg
add_zero
Mathlib.Tactic.RingNF.mul_assoc_rev
Even.neg_pow
one_pow
one_mul
resultant_comm πŸ“–mathematicalβ€”resultant
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”resultant.eq_1
add_comm
sylvester_comm
Matrix.det_reindex
Equiv.Perm.sign_eq_prod_prod_Ioi
Finset.prod_congr
Units.coe_prod
Int.cast_prod
Int.cast_one
Int.cast_neg
Equiv.prod_comp
Finset.prod_map_equiv
Equiv.symm_apply_apply
Finset.prod_ite_mem_eq
Fintype.prod_sum_type
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
Finset.prod_const_one
LT.lt.trans_le
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
Nat.instCanonicallyOrderedAdd
LE.le.trans
LT.lt.le
Finset.prod_const
Fintype.card_fin
one_mul
mul_one
pow_mul
resultant_deriv πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
degree
CommSemiring.toSemiring
CommRing.toCommSemiring
resultant
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
natDegree
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
leadingCoeff
discr
β€”resultant_comm
resultant.eq_1
natDegree_pos_iff_degree_pos
sylvesterDeriv_updateRow
Matrix.det_updateRow_smul
Matrix.updateRow_eq_self
discr.eq_1
mul_comm
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.int_rawCast_neg
add_zero
mul_one
Mathlib.Tactic.RingNF.mul_assoc_rev
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Nat.two_dvd_mul_add_one
resultant_dvd_leadingCoeff_pow πŸ“–mathematicalIsCoprime
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
commSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
resultant
natDegree
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
leadingCoeff
β€”eq_or_ne
resultant_zero_left_deg
IsDomain.to_noZeroDivisors
natDegree_C
pow_zero
resultant_zero_right_deg
leadingCoeff_C
isUnit_iff
IsUnit.of_mul_eq_one_right
instIsDedekindFiniteMonoid
MulZeroClass.zero_mul
zero_add
coeff_C_zero
IsUnit.pow
add_zero
resultant_mul_right
le_rfl
resultant_one_right
mul_comm
add_comm
resultant_add_mul_right
natDegree_add_eq_left_of_natDegree_lt
natDegree_mul
natDegree_one
resultant_eq_prod_eval πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
Splits
resultant
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
leadingCoeff
Multiset.prod
CommRing.toCommMonoid
Multiset.map
eval
roots
β€”resultant_zero_left_deg
Multiset.map_congr
roots.congr_simp
roots_zero
mul_one
Monic.leadingCoeff
one_pow
one_mul
Monic.natDegree_eq_zero
natDegree_one
coeff_one_zero
roots_one
eval_zero
resultant_zero_right
zero_pow
MulZeroClass.zero_mul
Multiset.map_const'
Splits.natDegree_eq_card_roots
Multiset.prod_replicate
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
instIsDomain
resultant_eq_prod_roots_sub
Monic.map
Splits.map
SplittingField.splits
resultant_map_map
resultant_add_right_deg
natDegree_map
coeff_map
coeff_natDegree
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_sub_sprod_roots_eq_prod_map_eval
Splits.roots_map
map_multiset_prod
Multiset.map_map
eval_map_algebraMap
aeval_algebraMap_apply
natDegree_C_mul
IsDomain.to_noZeroDivisors
instNoZeroDivisors
nontrivial
Monic.eq_1
coeff_C_mul
inv_mul_cancelβ‚€
eval_mul
eval_C
Multiset.prod_map_mul
inv_pow
mul_inv_cancel_leftβ‚€
isReduced_of_noZeroDivisors
inv_mul_eq_iff_eq_mulβ‚€
resultant_C_mul_right
Splits.mul
Splits.C
resultant_C_mul_left
roots_C_mul
FaithfulSMul.algebraMap_injective
FractionRing.instFaithfulSMul
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.self
IsDomain.toNontrivial
LE.le.trans
natDegree_map_le
Field.toIsField
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
map_pow
OreLocalization.instIsScalarTower
IsScalarTower.right
natDegree_map_eq_of_injective
leadingCoeff_map_of_injective
resultant_eq_prod_roots_sub πŸ“–mathematicalMonic
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Splits
resultant
EuclideanDomain.toCommRing
Field.toEuclideanDomain
natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
Multiset.prod
CommRing.toCommMonoid
Multiset.map
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
SProd.sprod
Multiset
Multiset.instSProd
roots
instIsDomain
β€”instIsDomain
Nat.strong_induction_on
instNoZeroDivisors
IsDomain.to_noZeroDivisors
Monic.ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
resultant_add_mul_left
natDegree_mul
natDegree_neg
add_comm
le_refl
le_rfl
mul_neg
add_neg_cancel
resultant_zero_left
natDegree_one
pow_zero
coeff_one_zero
one_mul
one_pow
mul_one
Multiset.map_congr
roots.congr_simp
roots_one
Multiset.product_zero
Monic.natDegree_eq_zero
zero_pow
not_forall_not
Multiset.eq_zero_iff_forall_notMem
Multiset.card_eq_zero
Splits.natDegree_eq_card_roots
Multiset.prod_eq_zero
Multiset.mem_product
eval_mul
MulZeroClass.zero_mul
sub_self
natDegree_C_mul
natDegree_modByMonic_lt
Monic.eq_1
leadingCoeff.eq_1
coeff_C_mul
inv_mul_cancelβ‚€
natDegree_map
DivisionRing.isSimpleRing
Monic.map
Splits.map
SplittingField.splits
map_mul
map_C
map_invβ‚€
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
LT.lt.le
modByMonic_add_div
natDegree_divByMonic
LE.le.trans
resultant_add_left_deg
resultant_comm
RingHom.injective
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
inv_mul_eq_iff_eq_mulβ‚€
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
isReduced_of_noZeroDivisors
inv_pow
resultant_C_mul_right
resultant_map_map
map_sub_roots_sprod_eq_prod_map_eval
map_sub_sprod_roots_eq_prod_map_eval
Splits.roots_map
eval_C
mul_inv_cancel_leftβ‚€
eval_add
add_zero
Multiset.prod_map_mul
Multiset.map_const'
Multiset.prod_replicate
map_neg
RingHomClass.toAddMonoidHomClass
map_one
MonoidHomClass.toOneHomClass
Monic.leadingCoeff
eval_map_algebraMap
Multiset.map_map
map_multiset_prod
mul_comm
Distrib.rightDistribClass
aeval_algebraMap_apply
le_of_not_ge
Multiset.map_swap_product
Multiset.card_product
neg_mul
neg_sub
resultant_eq_zero_iff πŸ“–mathematicalβ€”resultant
EuclideanDomain.toCommRing
Field.toEuclideanDomain
natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsCoprime
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
commSemiring
Semifield.toCommSemiring
β€”eq_or_ne
resultant_zero_right_deg
pow_zero
NeZero.one
IsLocalRing.toNontrivial
Field.instIsLocalRing
resultant_zero_left_deg
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
nontrivial
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Monic.eq_1
coeff_natDegree
natDegree_C_mul
coeff_C_mul
inv_mul_cancelβ‚€
isUnit_resultant_iff_isCoprime
isCoprime_mul_unit_left_left
isUnit_C
IsUnit.mul_iff
instIsDedekindFiniteMonoid
resultant_C_mul_left
inv_pow
resultant_eq_zero_of_lt_lt πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
resultant
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”resultant_add_left_deg
resultant_add_right_deg
mul_one
coeff_eq_zero_of_natDegree_lt
pow_one
MulZeroClass.mul_zero
MulZeroClass.zero_mul
resultant_integralNormalization πŸ“–mathematicalβ€”resultant
scaleRoots
CommSemiring.toSemiring
CommRing.toCommSemiring
leadingCoeff
integralNormalization
natDegree
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”natDegree_scaleRoots
natDegree_integralNormalization
resultant_zero_right_deg
integralNormalization_zero
zero_tsub
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
MulZeroClass.mul_zero
pow_zero
one_mul
mul_right_injectiveβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
IsDomain.toNontrivial
resultant_scaleRoots
resultant_C_mul_right
mul_comm
integralNormalization_mul_C_leadingCoeff
mul_assoc
pow_add
add_comm
resultant_zero_left_deg
zero_scaleRoots
MulZeroClass.zero_mul
MvPolynomial.evalβ‚‚_X
mem_lifts_and_degree_eq
map_surjective
natDegree_eq_natDegree
coeff_map
map_scaleRoots
integralNormalization_map
resultant_map_map
MvPolynomial.instIsDomainOfIsCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
Int.instIsDomain
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
resultant_map_map πŸ“–mathematicalβ€”resultant
map
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”Matrix.det.congr_simp
sylvester_map_map
RingHom.map_det
resultant_mul_left πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
resultant
Polynomial
instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”resultant_comm
resultant_mul_right
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.int_rawCast_neg
add_zero
Mathlib.Tactic.RingNF.mul_assoc_rev
mul_one
Even.neg_pow
Distrib.leftDistribClass
one_pow
resultant_mul_right πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
resultant
Polynomial
instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”induction_of_Splits_of_injective_of_surjective
instIsDomain
resultant_eq_prod_eval
Multiset.map_congr
eval_mul
Multiset.prod_map_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
Mathlib.Tactic.RingNF.mul_assoc_rev
add_zero
natDegree_map_eq_of_injective
resultant_map_map
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
map_mul
mem_lifts_and_degree_eq
map_surjective
natDegree_eq_natDegree
map_mul
le_iff_exists_add
Nat.instCanonicallyOrderedAdd
resultant_add_left_deg
coeff_mul_degree_add_degree
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.RingNF.int_rawCast_neg
resultant_ne_zero πŸ“–β€”IsCoprime
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
commSemiring
β€”β€”eq_or_ne
resultant_zero_left_deg
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
IsDomain.toNontrivial
natDegree_C
resultant_dvd_leadingCoeff_pow
resultant_one_left πŸ“–mathematicalβ€”resultant
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
coeff
β€”one_pow
mul_one
resultant_C_left
resultant_one_right πŸ“–mathematicalβ€”resultant
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
coeff
β€”one_pow
mul_one
resultant_C_right
resultant_pow_left πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
resultant
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
β€”Finset.prod_const
Finset.card_range
resultant_prod_left
Finset.prod_congr
resultant_pow_right πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
resultant
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
β€”Finset.prod_const
Finset.card_range
resultant_prod_right
Finset.prod_congr
resultant_prod_left πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
resultant
Finset.prod
Polynomial
CommRing.toCommMonoid
commRing
β€”Finset.induction
natDegree_one
resultant_zero_left_deg
coeff_one_zero
one_pow
MulZeroClass.mul_zero
Finset.prod_insert
natDegree_mul'
leadingCoeff_prod'
resultant_mul_left
resultant_prod_right πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
resultant
Finset.prod
Polynomial
CommRing.toCommMonoid
commRing
β€”resultant_comm
Finset.prod_congr
resultant_prod_left
Finset.prod_mul_distrib
Finset.prod_pow_eq_pow_sum
Finset.mul_sum
natDegree_prod'
resultant_scaleRoots πŸ“–mathematicalβ€”resultant
scaleRoots
CommSemiring.toSemiring
CommRing.toCommSemiring
natDegree
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”natDegree_scaleRoots
eq_or_ne
resultant_zero_left_deg
zero_scaleRoots
MulZeroClass.zero_mul
pow_zero
one_mul
resultant_zero_right_deg
MulZeroClass.mul_zero
induction_of_Splits_of_injective_of_surjective
natDegree_eq_zero
natDegree_C
scaleRoots_C
coeff_C_zero
scaleRoots_zero
Algebra.smul_def
resultant_C_mul_right
resultant_X_pow_right
natDegree_mul_X_pow
IsLocalRing.toNontrivial
Field.instIsLocalRing
nontrivial
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
zero_add
mul_coeff_zero
coeff_X_pow
zero_pow
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
instIsDomain
resultant_eq_prod_eval
le_rfl
Splits.scaleRoots
roots_scaleRoots
isUnit_iff_ne_zero
Multiset.map_map
Multiset.map_congr
scaleRoots_eval_mul
leadingCoeff_scaleRoots
Multiset.prod_map_mul
Multiset.map_const'
Splits.natDegree_eq_card_roots
Multiset.prod_replicate
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
map_zero
map_injective
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
natDegree_map_eq_of_injective
resultant_map_map
map_scaleRoots
map_eq_zero_iff
MonoidWithZeroHomClass.toZeroHomClass
mem_lifts_and_degree_eq
map_surjective
natDegree_eq_natDegree
coeff_map
resultant_self πŸ“–mathematicalβ€”resultant
natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”induction_of_Splits_of_injective_of_surjective
natDegree_eq_zero
natDegree_C
resultant_zero_right_deg
coeff_C_zero
pow_zero
instIsDomain
resultant_eq_prod_eval
le_rfl
zero_pow
IsDomain.to_noZeroDivisors
isReduced_of_noZeroDivisors
IsLocalRing.toNontrivial
Field.instIsLocalRing
Splits.exists_eval_eq_zero
degree_ne_of_natDegree_ne
eq_or_ne
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_zero
MonoidWithZeroHomClass.toZeroHomClass
natDegree_map_eq_of_injective
resultant_map_map
mem_lifts_and_degree_eq
map_surjective
natDegree_eq_natDegree
resultant_self_eq_zero πŸ“–mathematicalβ€”resultant
natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”resultant_self
zero_pow
resultant_succ_left_deg πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
resultant
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
coeff
β€”resultant_zero_right_deg
pow_succ'
pow_zero
one_mul
resultant.eq_1
Matrix.det_succ_row
Finset.sum_eq_single
coeff_eq_zero_of_natDegree_lt
MulZeroClass.mul_zero
Matrix.det.congr_simp
Fin.succAbove_last
MulZeroClass.zero_mul
instIsEmptyFalse
Matrix.det_reindex_self
Matrix.submatrix_submatrix
pow_add
Even.neg_pow
Distrib.rightDistribClass
Nat.instAtLeastTwoHAddOfNat
one_pow
pow_one
mul_neg
mul_one
add_assoc
add_comm
add_tsub_cancel_left
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Matrix.ext
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
Nat.instCanonicallyOrderedAdd
add_right_comm
ite_and
resultant_taylor πŸ“–mathematicalβ€”resultant
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
taylor
natDegree
β€”induction_of_Splits_of_injective_of_surjective
Submonoid.closure_induction
taylor_C
natDegree_C
natDegree_taylor
resultant_zero_left_deg
coeff_C_zero
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
taylor_X
add_assoc
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
natDegree_add_C
natDegree_X
IsLocalRing.toNontrivial
Field.instIsLocalRing
resultant_X_add_C_left
neg_add_rev
taylor_eval
neg_add_cancel_right
taylor_one
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
natDegree_one
coeff_one_zero
one_pow
MulZeroClass.zero_mul
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
MulZeroClass.mul_zero
taylor_mul
natDegree_mul'
leadingCoeff_taylor
IsDomain.to_noZeroDivisors
instIsDomain
resultant_mul_left
le_rfl
map_taylor
natDegree_map_eq_of_injective
resultant_map_map
mem_lifts_and_degree_eq
map_surjective
natDegree_eq_natDegree
coeff_map
resultant_zero_left πŸ“–mathematicalβ€”resultant
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instZero
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
coeff
β€”resultant_comm
resultant_zero_right
MulZeroClass.mul_zero
pow_zero
one_mul
zero_pow
MulZeroClass.zero_mul
resultant_zero_left_deg πŸ“–mathematicalβ€”resultant
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
coeff
β€”Matrix.det.congr_simp
sylvester_zero_left_deg
Matrix.det_diagonal
Finset.prod_const
Fintype.card_congr'
zero_add
Fintype.card_fin
resultant_zero_right πŸ“–mathematicalβ€”resultant
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instZero
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
coeff
β€”resultant_zero_left_deg
pow_zero
one_mul
zero_pow
MulZeroClass.zero_mul
Matrix.det_eq_zero_of_column_eq_zero
Nat.instCanonicallyOrderedAdd
Nat.instNoMaxOrder
resultant_zero_right_deg πŸ“–mathematicalβ€”resultant
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
coeff
β€”resultant_comm
MulZeroClass.mul_zero
pow_zero
resultant_zero_left_deg
one_mul
resultant_zero_zero πŸ“–mathematicalβ€”resultant
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instZero
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”resultant_zero_right
pow_add
sylveserMap_comp_adjSylvester πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
LinearMap.comp
Polynomial
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
module
Semiring.toModule
SetLike.instMembership
Submodule.setLike
degreeLT
Submodule.addCommMonoid
Prod.instAddCommMonoid
Submodule.module
Prod.instModule
RingHom.id
RingHomCompTriple.ids
sylvesterMap
adjSylvester
LinearMap
LinearMap.instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
Ring.toSemiring
CommRing.toRing
resultant
LinearMap.id
β€”RingHomInvPair.ids
smulCommClass_self
Finite.of_fintype
Matrix.mul_adjugate
RingHomCompTriple.ids
resultant.eq_1
Matrix.toLin_one
toMatrix_sylvesterMap'
map_smul
SemilinearMapClass.toMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
Matrix.toLin_toMatrix
Matrix.toLin_mul
sylvesterDeriv_updateRow πŸ“–mathematicalnatDegreeMatrix.updateRow
sylvesterDeriv
Function.hasSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DistribSMul.toSMulZeroClass
NonUnitalNonAssocSemiring.toDistribSMul
NonAssocSemiring.toNonUnitalNonAssocSemiring
leadingCoeff
sylvester
DFunLike.coe
LinearMap
RingHom.id
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
β€”Matrix.ext
sylvesterDeriv.eq_1
ne_or_eq
Matrix.updateRow_ne
Matrix.updateRow.congr_simp
coeff_derivative
Matrix.updateRow_self
Matrix.updateRow_apply
mul_ite
mul_one
MulZeroClass.mul_zero
Nat.instOrderedSub
Nat.cast_one
Nat.cast_add
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_natSub
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.isNat_ofNat
tsub_zero
zero_tsub
Nat.instCanonicallyOrderedAdd
zero_add
sylvesterMap_apply_coe πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
module
Semiring.toModule
SetLike.instMembership
Submodule.setLike
degreeLT
DFunLike.coe
LinearMap
RingHom.id
Prod.instAddCommMonoid
Submodule.addCommMonoid
Prod.instModule
Submodule.module
LinearMap.instFunLike
sylvesterMap
instAdd
instMul
β€”β€”
sylvester_comm πŸ“–mathematicalβ€”sylvester
DFunLike.coe
Equiv
Matrix
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
Nat.instAddCommSemigroup
EquivLike.toFunLike
Equiv.instEquivLike
Matrix.reindex
finCongr
add_comm
Equiv.trans
Equiv.symm
finSumFinEquiv
Equiv.sumComm
β€”Matrix.ext
add_comm
finSumFinEquiv_symm_apply_castAdd
finSumFinEquiv_symm_apply_natAdd
sylvester_map_map πŸ“–mathematicalβ€”sylvester
map
DFunLike.coe
RingHom
Matrix
Matrix.nonAssocSemiring
Semiring.toNonAssocSemiring
Fin.fintype
RingHom.instFunLike
RingHom.mapMatrix
β€”Matrix.ext
coeff_map
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
sylvester_zero_left_deg πŸ“–mathematicalβ€”sylvester
Matrix.diagonal
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
coeff
β€”Matrix.ext
sylvester.eq_1
Matrix.of_apply
Matrix.diagonal_apply
tsub_self
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
add_zero
Set.Icc_self
toMatrix_sylvesterMap πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap
Polynomial
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
SetLike.instMembership
Submodule.setLike
degreeLT
Prod.instAddCommMonoid
Submodule.addCommMonoid
Prod.instModule
Submodule.module
Matrix
LinearMap.addCommMonoid
Matrix.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Matrix.module
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearMap.toMatrix
instFintypeSum
Fin.fintype
Finite.of_fintype
Module.Basis.prod
degreeLT.basis
sylvesterMap
Equiv
Equiv.instEquivLike
Matrix.reindex
Equiv.refl
Equiv.symm
finSumFinEquiv
sylvester
β€”Matrix.ext
RingHomInvPair.ids
smulCommClass_self
Finite.of_fintype
ite_and
coeff_eq_zero_of_natDegree_lt
LinearMap.toMatrix_apply
Module.Basis.prod_apply
MulZeroClass.mul_zero
degreeLT.basis_val
zero_add
coeff_mul_X_pow'
add_zero
toMatrix_sylvesterMap' πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap
Polynomial
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
SetLike.instMembership
Submodule.setLike
degreeLT
Prod.instAddCommMonoid
Submodule.addCommMonoid
Prod.instModule
Submodule.module
Matrix
LinearMap.addCommMonoid
Matrix.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Matrix.module
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearMap.toMatrix
Fin.fintype
Finite.of_fintype
Module.Basis.reindex
Module.Basis.prod
degreeLT.basis
finSumFinEquiv
sylvesterMap
sylvester
β€”Matrix.ext
RingHomInvPair.ids
smulCommClass_self
Finite.of_fintype
Equiv.surjective
LinearMap.toMatrix_apply
Module.Basis.coe_reindex
Equiv.symm_apply_apply
Module.Basis.prod_apply
coeff_add
toMatrix_sylvesterMap

---

← Back to Index