π Source: Mathlib/RingTheory/Polynomial/SmallDegreeVieta.lean
aroots_quadratic_eq_pair_iff_of_ne_zero
aroots_quadratic_eq_pair_iff_of_ne_zero'
eq_mul_mul_of_aroots_quadratic_eq_pair
eq_mul_mul_of_roots_quadratic_eq_pair
eq_neg_mul_add_of_aroots_quadratic_eq_pair
eq_neg_mul_add_of_roots_quadratic_eq_pair
eq_quadratic_of_degree_le_two
roots_quadratic_eq_pair_iff_of_ne_zero
roots_quadratic_eq_pair_iff_of_ne_zero'
aroots
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instAdd
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
Multiset
Multiset.instInsert
Multiset.instSingleton
algebraMap
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
Distrib.toAdd
aroots_def
map_add
map_mul
map_C
map_pow
map_X
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
DivisionRing.toRing
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
roots
le_antisymm
natDegree_quadratic_le
Multiset.card_pair
card_roots'
mul_assoc
coeff_add
mul_coeff_zero
coeff_C_zero
coeff_X_pow
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
MulZeroClass.mul_zero
coeff_X_zero
add_zero
zero_add
coeff_C_mul
mul_one
coeff_mul_X
coeff_C_succ
tsub_zero
Nat.instOrderedSub
Even.neg_pow
one_pow
Multiset.esymm_pair_two
coeff_eq_esymm_roots_of_card
Nat.instCanonicallyOrderedAdd
add_comm
neg_mul
pow_one
mul_neg
Multiset.esymm_pair_one
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instZeroLEOneClass
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
degree
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
coeff
as_sum_range_C_mul_X_pow'
natDegree_le_iff_degree_le
Finset.sum_range_succ
Finset.sum_singleton
pow_zero
Mathlib.Tactic.Abel.subst_into_add
Mathlib.Tactic.Abel.term_atom
Mathlib.Tactic.Abel.term_add_const
Mathlib.Tactic.Abel.const_add_term
map_neg
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
AddMonoidHomClass.toAddHomClass
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.IsInt.to_isNat
mul_ne_zero
instNoZeroDivisors
IsDomain.to_noZeroDivisors
X_sub_C_ne_zero
IsDomain.toNontrivial
roots.congr_simp
roots_mul
roots_C
roots_X_sub_C
Multiset.zero_add
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
neg_div
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_evalβ
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
Mathlib.Tactic.FieldSimp.NF.div_eq_evalβ
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
---
β Back to Index