Documentation Verification Report

UniqueFactorization

πŸ“ Source: Mathlib/RingTheory/Polynomial/UniqueFactorization.lean

Statistics

MetricCount
DefinitionsfintypeSubtypeMonicDvd
1
TheoremsuniqueFactorizationMonoid, exists_irreducible_of_degree_pos, exists_irreducible_of_natDegree_ne_zero, exists_irreducible_of_natDegree_pos, exists_monic_irreducible_factor, uniqueFactorizationMonoid, wfDvdMonoid
7
Total8

MvPolynomial

Theorems

NameKindAssumesProvesValidatesDepends On
uniqueFactorizationMonoid πŸ“–mathematicalβ€”UniqueFactorizationMonoid
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
commSemiring
β€”UniqueFactorizationMonoid.iff_exists_prime_factors
instIsCancelMulZeroOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
UniqueFactorizationMonoid.toIsCancelMulZero
exists_finset_rename
Finite.of_fintype
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Multiset.mem_map
prime_rename_iff
Multiset.prod_hom
MonoidWithZeroHomClass.toMonoidHomClass
Units.coe_map
AlgHom.toRingHom_eq_coe
RingHom.instRingHomClass
RingHom.toMonoidHom_eq_coe
AlgHom.toRingHom_toMonoidHom
MonoidHom.coe_coe
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass

Polynomial

Definitions

NameCategoryTheorems
fintypeSubtypeMonicDvd πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
exists_irreducible_of_degree_pos πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
degree
CommSemiring.toSemiring
Irreducible
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
commSemiring
β€”WfDvdMonoid.exists_irreducible_factor
wfDvdMonoid
ne_of_gt
degree_eq_zero_of_isUnit
not_lt_of_gt
WithBot.bot_lt_coe
degree_zero
exists_irreducible_of_natDegree_ne_zero πŸ“–mathematicalβ€”Irreducible
Polynomial
CommSemiring.toSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
commSemiring
β€”exists_irreducible_of_natDegree_pos
exists_irreducible_of_natDegree_pos πŸ“–mathematicalnatDegree
CommSemiring.toSemiring
Irreducible
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
commSemiring
β€”exists_irreducible_of_degree_pos
Mathlib.Tactic.Contrapose.contrapose₁
natDegree_le_of_degree_le
exists_monic_irreducible_factor πŸ“–mathematicalIsUnit
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
Monic
Irreducible
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”monic_X
irreducible_X
instIsDomain
dvd_zero
WfDvdMonoid.exists_irreducible_factor
UniqueFactorizationMonoid.toIsWellFounded
uniqueFactorizationMonoid
PrincipalIdealRing.to_uniqueFactorizationMonoid
EuclideanDomain.to_principal_ideal_domain
associated_mul_unit_right
isUnit_C
IsUnit.inv
Ne.isUnit
leadingCoeff_ne_zero
Irreducible.ne_zero
monic_mul_leadingCoeff_inv
Associated.irreducible
Associated.dvd_iff_dvd_left
uniqueFactorizationMonoid πŸ“–mathematicalβ€”UniqueFactorizationMonoid
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
commSemiring
β€”ufm_of_decomposition_of_wfDvdMonoid
instIsCancelMulZeroOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
UniqueFactorizationMonoid.toIsCancelMulZero
UniqueFactorizationMonoid.toIsWellFounded
wfDvdMonoid
IsRightCancelMulZero.to_noZeroDivisors
IsCancelMulZero.toIsRightCancelMulZero
instDecompositionMonoidOfNonemptyGCDMonoid
instNonemptyGCDMonoidOfNormalizedGCDMonoid
instNonemptyNormalizedGCDMonoid
instNonemptyNormalizedGCDMonoidOfUniqueFactorizationMonoid
wfDvdMonoid πŸ“–mathematicalβ€”WfDvdMonoid
Polynomial
CommSemiring.toSemiring
CommSemiring.toCommMonoidWithZero
commSemiring
β€”RelHomClass.wellFounded
RelHom.instRelHomClass
degree_mul
leadingCoeff_zero
WithTop.coe_lt_top
right_ne_zero_of_mul
leadingCoeff_mul
Nat.cast_zero
add_zero
leadingCoeff_eq_zero
isUnit_iff
eq_C_of_degree_eq_zero
leadingCoeff.eq_1
natDegree_eq_of_degree_eq_some
degree_eq_natDegree
WithTop.coe_lt_coe
Nat.cast_add
Nat.cast_lt
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
WithBot.charZero
Nat.instCharZero
lt_add_of_pos_right
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
WellFounded.prod_lex
wellFounded_lt
WithTop.instWellFoundedLT
WithBot.instWellFoundedLT
instWellFoundedLTNat
IsWellFounded.wf

---

← Back to Index