Documentation Verification Report

Wronskian

πŸ“ Source: Mathlib/RingTheory/Polynomial/Wronskian.lean

Statistics

MetricCount
Definitionswronskian, wronskianBilin
2
Theoremswronskian_eq_zero_iff, degree_wronskian_lt_add, isAlt_wronskianBilin, natDegree_wronskian_lt_add, wronskianBilin_apply, wronskian_add_left, wronskian_add_right, wronskian_eq_of_sum_zero, wronskian_neg_eq, wronskian_neg_left, wronskian_neg_right, wronskian_self_eq_zero, wronskian_zero_left, wronskian_zero_right
14
Total16

IsCoprime

Theorems

NameKindAssumesProvesValidatesDepends On
wronskian_eq_zero_iff πŸ“–mathematicalIsCoprime
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.commSemiring
Polynomial.wronskian
Polynomial.instZero
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Polynomial.semiring
Polynomial.module
Semiring.toModule
LinearMap.instFunLike
Polynomial.derivative
β€”Polynomial.dvd_derivative_iff
dvd_of_dvd_mul_right
zero_add
sub_eq_iff_eq_add
Polynomial.wronskian.eq_1
dvd_mul_right
dvd_of_dvd_mul_left
symm
dvd_mul_left
MulZeroClass.mul_zero
MulZeroClass.zero_mul
sub_self

Polynomial

Definitions

NameCategoryTheorems
wronskian πŸ“–CompOp
15 mathmath: wronskian_self_eq_zero, wronskian_add_right, wronskian_neg_right, wronskian_eq_of_sum_zero, wronskian_neg_eq, wronskian_zero_left, wronskianBilin_apply, degree_wronskian_lt_add, divRadical_dvd_wronskian_right, wronskian_add_left, natDegree_wronskian_lt_add, IsCoprime.wronskian_eq_zero_iff, divRadical_dvd_wronskian_left, wronskian_neg_left, wronskian_zero_right
wronskianBilin πŸ“–CompOp
2 mathmath: isAlt_wronskianBilin, wronskianBilin_apply

Theorems

NameKindAssumesProvesValidatesDepends On
degree_wronskian_lt_add πŸ“–mathematicalβ€”WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
CommSemiring.toSemiring
CommRing.toCommSemiring
wronskian
WithBot.add
β€”degree_sub_le
max_lt_iff
lt_of_le_of_lt
degree_mul_le
WithBot.add_lt_add_iff_left
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
degree_ne_bot
degree_derivative_lt
WithBot.add_lt_add_iff_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
contravariant_swap_add_of_contravariant_add
isAlt_wronskianBilin πŸ“–mathematicalβ€”LinearMap.IsAlt
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
module
Semiring.toModule
RingHom.id
Semiring.toNonAssocSemiring
wronskianBilin
β€”wronskian_self_eq_zero
natDegree_wronskian_lt_add πŸ“–mathematicalβ€”natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
wronskian
β€”wronskian_zero_left
wronskian_zero_right
WithBot.coe_lt_coe
WithBot.coe_add
degree_eq_natDegree
degree_wronskian_lt_add
wronskianBilin_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
module
Semiring.toModule
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
smulCommClass
DistribSMul.toSMulZeroClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.to_smulCommClass
Algebra.id
wronskianBilin
wronskian
β€”smulCommClass
Algebra.to_smulCommClass
wronskian_add_left πŸ“–mathematicalβ€”wronskian
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instAdd
β€”LinearMap.map_addβ‚‚
smulCommClass
Algebra.to_smulCommClass
wronskian_add_right πŸ“–mathematicalβ€”wronskian
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instAdd
β€”LinearMap.map_add
smulCommClass
Algebra.to_smulCommClass
wronskian_eq_of_sum_zero πŸ“–mathematicalPolynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instAdd
instZero
wronskianβ€”LinearMap.IsAlt.eq_of_add_add_eq_zero
isAlt_wronskianBilin
AddCancelMonoid.toIsCancelAdd
wronskian_neg_eq πŸ“–mathematicalβ€”Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instNeg
CommRing.toRing
wronskian
β€”LinearMap.IsAlt.neg
isAlt_wronskianBilin
wronskian_neg_left πŸ“–mathematicalβ€”wronskian
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instNeg
CommRing.toRing
β€”LinearMap.map_negβ‚‚
smulCommClass
Algebra.to_smulCommClass
wronskian_neg_right πŸ“–mathematicalβ€”wronskian
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instNeg
CommRing.toRing
β€”LinearMap.map_neg
smulCommClass
Algebra.to_smulCommClass
wronskian_self_eq_zero πŸ“–mathematicalβ€”wronskian
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instZero
β€”wronskian.eq_1
mul_comm
sub_self
wronskian_zero_left πŸ“–mathematicalβ€”wronskian
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instZero
β€”smulCommClass
Algebra.to_smulCommClass
wronskianBilin_apply
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
wronskian_zero_right πŸ“–mathematicalβ€”wronskian
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instZero
β€”LinearMap.map_zero
smulCommClass
Algebra.to_smulCommClass

---

← Back to Index