Documentation Verification Report

PowerBasis

πŸ“ Source: Mathlib/RingTheory/PowerBasis.lean

Statistics

MetricCount
DefinitionsPowerBasis, PowerBasis, fintype, basis, dim, equivOfMinpoly, equivOfRoot, gen, liftEquiv, liftEquiv', map, minpolyGen
12
Theoremsmem_span_pow, PowerBasis_gen, adjoin_eq_top_of_gen_mem_adjoin, adjoin_gen_eq_top, aeval_minpolyGen, algHom_ext, basis_eq_pow, coe_basis, constr_pow_aeval, constr_pow_algebraMap, constr_pow_gen, constr_pow_mul, degree_minpoly, degree_minpolyGen, dim_le_degree_of_root, dim_le_natDegree_of_root, dim_ne_zero, dim_pos, equivOfMinpoly_aeval, equivOfMinpoly_apply, equivOfMinpoly_gen, equivOfMinpoly_map, equivOfMinpoly_symm, equivOfRoot_aeval, equivOfRoot_apply, equivOfRoot_gen, equivOfRoot_map, equivOfRoot_symm, exists_eq_aeval, exists_eq_aeval', exists_gen_dvd_sub, exists_smodEq, finite, finrank, isIntegral_gen, leftMulMatrix, liftEquiv'_apply_coe, liftEquiv'_symm_apply_apply, liftEquiv_apply_coe, liftEquiv_symm_apply, lift_aeval, lift_gen, map_basis, map_dim, map_gen, mem_span_pow, mem_span_pow', minpolyGen_eq, minpolyGen_map, minpolyGen_monic, natDegree_minpoly, natDegree_minpolyGen, linearIndependent_pow
53
Total65

IsIntegral

Theorems

NameKindAssumesProvesValidatesDepends On
mem_span_pow πŸ“–mathematicalIsIntegral
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Algebra.toModule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.range
Polynomial.natDegree
minpoly
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”PowerBasis.mem_span_pow'
minpoly.monic
LT.lt.trans_le
Polynomial.degree_modByMonic_lt
Polynomial.degree_le_natDegree
Polynomial.modByMonic_add_div
Polynomial.aeval_add
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
minpoly.aeval
MulZeroClass.zero_mul
add_zero

Module.Basis

Definitions

NameCategoryTheorems
PowerBasis πŸ“–CompOp
1 mathmath: PowerBasis_gen

Theorems

NameKindAssumesProvesValidatesDepends On
PowerBasis_gen πŸ“–mathematicalDFunLike.coe
Module.Basis
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Algebra.toModule
Ring.toSemiring
instFunLike
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Fintype.card
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
PowerBasis.gen
PowerBasis
β€”β€”

PowerBasis

Definitions

NameCategoryTheorems
basis πŸ“–CompOp
31 mathmath: IsCyclotomicExtension.discr_prime_pow_eq_unit_mul_pow, IsCyclotomicExtension.discr_odd_prime, map_basis, IsCyclotomicExtension.Rat.discr_prime_pow', Algebra.discr_powerBasis_eq_norm, leftMulMatrix, coe_basis, charpoly_leftMulMatrix, constr_pow_algebraMap, IsPrimitiveRoot.discr_zeta_eq_discr_zeta_sub_one, repr_gen_pow_isIntegral, Algebra.embeddingsMatrixReindex_eq_vandermonde, IsCyclotomicExtension.Rat.discr_prime_pow_ne_two', IsCyclotomicExtension.discr_prime_pow_ne_two, IsAdjoinRootMonic.powerBasis_basis, constr_pow_gen, toMatrix_isIntegral, basis_eq_pow, Algebra.discr_mul_isIntegral_mem_adjoin, Algebra.discr_powerBasis_eq_prod, Algebra.discr_powerBasis_eq_prod'', Algebra.discr_powerBasis_eq_prod', liftEquiv'_symm_apply_apply, constr_pow_mul, Module.Basis.traceDual_powerBasis_eq, IsCyclotomicExtension.Rat.discr_odd_prime', constr_pow_aeval, Algebra.traceForm_toMatrix_powerBasis, IsCyclotomicExtension.Rat.discr_prime_pow_eq_unit_mul_pow', IsCyclotomicExtension.discr_prime_pow, IsCyclotomicExtension.discr_prime_pow_ne_two'
dim πŸ“–CompOp
57 mathmath: exists_eq_aeval, IsCyclotomicExtension.discr_prime_pow_eq_unit_mul_pow, Algebra.PowerBasis.norm_gen_eq_coeff_zero_minpoly, IsCyclotomicExtension.discr_odd_prime, ofAdjoinEqTop'_dim, map_dim, IsAdjoinRootMonic.powerBasis_dim, map_basis, IsPrimitiveRoot.powerBasis_dim, AdjoinRoot.powerBasis'_dim, IsCyclotomicExtension.Rat.discr_prime_pow', finrank, Algebra.discr_powerBasis_eq_norm, leftMulMatrix, coe_basis, natDegree_minpolyGen, charpoly_leftMulMatrix, constr_pow_algebraMap, Algebra.adjoin.powerBasis_dim, IsPrimitiveRoot.power_basis_int'_dim, IsPrimitiveRoot.discr_zeta_eq_discr_zeta_sub_one, repr_gen_pow_isIntegral, Algebra.embeddingsMatrixReindex_eq_vandermonde, IsPrimitiveRoot.integralPowerBasisOfPrimePow_dim, degree_minpoly, Algebra.adjoin.powerBasis'_dim, IsCyclotomicExtension.Rat.discr_prime_pow_ne_two', IsCyclotomicExtension.discr_prime_pow_ne_two, constr_pow_gen, AlgHom.card_of_powerBasis, toMatrix_isIntegral, basis_eq_pow, Algebra.discr_mul_isIntegral_mem_adjoin, IsPrimitiveRoot.subOnePowerBasis_dim, dim_pos, Algebra.discr_powerBasis_eq_prod, ofGenMemAdjoin'_dim, AdjoinRoot.powerBasis_dim, degree_minpolyGen, AlgHom.natCard_of_powerBasis, IsPrimitiveRoot.integralPowerBasis_dim, ofAdjoinEqTop_dim, Algebra.discr_powerBasis_eq_prod'', dim_le_natDegree_of_root, Algebra.discr_powerBasis_eq_prod', liftEquiv'_symm_apply_apply, constr_pow_mul, Module.Basis.traceDual_powerBasis_eq, IsCyclotomicExtension.Rat.discr_odd_prime', natDegree_minpoly, constr_pow_aeval, Algebra.traceForm_toMatrix_powerBasis, dim_le_degree_of_root, IntermediateField.adjoin.powerBasis_dim, IsCyclotomicExtension.Rat.discr_prime_pow_eq_unit_mul_pow', IsCyclotomicExtension.discr_prime_pow, IsCyclotomicExtension.discr_prime_pow_ne_two'
equivOfMinpoly πŸ“–CompOp
6 mathmath: equivOfMinpoly_map, equivOfMinpoly_gen, equivOfMinpoly_aeval, equivOfMinpoly_apply, equivOfMinpoly_symm, IsCyclotomicExtension.autEquivPow_symm_apply
equivOfRoot πŸ“–CompOp
5 mathmath: equivOfRoot_symm, equivOfRoot_apply, equivOfRoot_aeval, equivOfRoot_map, equivOfRoot_gen
gen πŸ“–CompOp
65 mathmath: IsPrimitiveRoot.subOneIntegralPowerBasis_gen_prime, exists_eq_aeval, Algebra.PowerBasis.norm_gen_eq_coeff_zero_minpoly, isIntegral_gen, quotientEquivQuotientMinpolyMap_apply, IsPrimitiveRoot.subOneIntegralPowerBasis_gen, equivAdjoinSimple_symm_aeval, AdjoinRoot.powerBasis'_gen, IsPrimitiveRoot.integralPowerBasisOfPrimePow_gen, IsPrimitiveRoot.powerBasis_gen_mem_adjoin_zeta_sub_one, Algebra.discr_powerBasis_eq_norm, quotientEquivQuotientMinpolyMap_apply_mk, IsPrimitiveRoot.subOneIntegralPowerBasis'_gen_prime, map_gen, IntermediateField.adjoin.powerBasis_gen, leftMulMatrix, quotientEquivQuotientMinpolyMap_symm_apply_mk, coe_basis, IsPrimitiveRoot.powerBasis_gen, charpoly_leftMulMatrix, IsPrimitiveRoot.integralPowerBasis'_gen, liftEquiv_symm_apply, equivAdjoinSimple_aeval, IsPrimitiveRoot.subOneIntegralPowerBasis'_gen, trace_gen_eq_nextCoeff_minpoly, exists_smodEq, IsAdjoinRootMonic.powerBasis_gen, adjoin_gen_eq_top, Algebra.embeddingsMatrixReindex_eq_vandermonde, sum_embeddings_eq_finrank_mul, degree_minpoly, equivAdjoinSimple_gen, equivAdjoinSimple_symm_gen, Algebra.adjoin.powerBasis_gen, basis_eq_pow, quotientEquivQuotientMinpolyMap_symm_apply, IsPrimitiveRoot.subOnePowerBasis_gen, ofAdjoinEqTop_gen, Algebra.discr_powerBasis_eq_prod, exists_eq_aeval', minpolyGen_eq, exists_gen_dvd_sub, Module.Basis.PowerBasis_gen, liftEquiv'_apply_coe, Algebra.adjoin.powerBasis'_minpoly_gen, AdjoinRoot.minpoly_powerBasis_gen, IsPrimitiveRoot.subOneIntegralPowerBasisOfPrimePow_gen, Algebra.discr_powerBasis_eq_prod'', IsPrimitiveRoot.integralPowerBasis_gen, Algebra.discr_powerBasis_eq_prod', liftEquiv'_symm_apply_apply, conductor_eq_top_of_powerBasis, Module.Basis.traceDual_powerBasis_eq, Algebra.adjoin.powerBasis'_gen, ofAdjoinEqTop'_gen, natDegree_minpoly, aeval_minpolyGen, Algebra.traceForm_toMatrix_powerBasis, AdjoinRoot.minpoly_powerBasis_gen_of_monic, Algebra.prod_embeddings_eq_finrank_pow, ofGenMemAdjoin'_gen, WeierstrassCurve.Affine.CoordinateRing.basis_apply, IsPrimitiveRoot.subOneIntegralPowerBasisOfPrimePow_gen_prime, AdjoinRoot.powerBasis_gen, liftEquiv_apply_coe
liftEquiv πŸ“–CompOp
2 mathmath: liftEquiv_symm_apply, liftEquiv_apply_coe
liftEquiv' πŸ“–CompOp
2 mathmath: liftEquiv'_apply_coe, liftEquiv'_symm_apply_apply
map πŸ“–CompOp
4 mathmath: map_dim, map_basis, map_gen, minpolyGen_map
minpolyGen πŸ“–CompOp
7 mathmath: minpolyGen_monic, leftMulMatrix, natDegree_minpolyGen, minpolyGen_map, minpolyGen_eq, degree_minpolyGen, aeval_minpolyGen

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_eq_top_of_gen_mem_adjoin πŸ“–mathematicalSubalgebra
CommRing.toCommSemiring
Ring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set
Set.instSingletonSet
gen
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”eq_top_iff
adjoin_gen_eq_top
Algebra.adjoin_le
adjoin_gen_eq_top πŸ“–mathematicalβ€”Algebra.adjoin
CommRing.toCommSemiring
Ring.toSemiring
Set
Set.instSingletonSet
gen
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”Algebra.toSubmodule_eq_top
eq_top_iff
Module.Basis.span_eq
Submodule.span_le
basis_eq_pow
Subalgebra.pow_mem
Algebra.subset_adjoin
Set.mem_singleton
aeval_minpolyGen πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
gen
minpolyGen
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
map_sum
Finset.sum_congr
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
Polynomial.aeval_C
Polynomial.aeval_X
sub_eq_zero
RingHomInvPair.ids
Module.Basis.linearCombination_repr
Finsupp.linearCombination_apply
Finsupp.sum_fintype
coe_basis
zero_smul
algHom_ext πŸ“–β€”DFunLike.coe
AlgHom
CommRing.toCommSemiring
Ring.toSemiring
AlgHom.funLike
gen
β€”β€”AlgHom.ext
exists_eq_aeval'
Polynomial.aeval_algHom_apply
AlgHom.algHomClass
basis_eq_pow πŸ“–mathematicalβ€”DFunLike.coe
Module.Basis
dim
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Algebra.toModule
Ring.toSemiring
Module.Basis.instFunLike
basis
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
gen
β€”β€”
coe_basis πŸ“–mathematicalβ€”DFunLike.coe
Module.Basis
dim
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Algebra.toModule
Ring.toSemiring
Module.Basis.instFunLike
basis
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
gen
β€”basis_eq_pow
constr_pow_aeval πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
minpoly
gen
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Algebra.toModule
LinearMap.instFunLike
LinearEquiv
RingHomInvPair.ids
Pi.addCommMonoid
dim
LinearMap.addCommMonoid
Pi.Function.module
LinearMap.module
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
CommRing.toRing
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.constr
basis
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”subsingleton_or_nontrivial
RingHomInvPair.ids
smulCommClass_self
Unique.instSubsingleton
Polynomial.aeval_zero
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Polynomial.aeval_modByMonic_eq_self_of_root
minpoly.monic
isIntegral_gen
minpoly.aeval
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
natDegree_minpoly
Polynomial.natDegree_lt_natDegree
Polynomial.degree_modByMonic_lt
Polynomial.aeval_eq_sum_range'
map_sum
Finset.sum_congr
map_smul
SemilinearMapClass.toMulActionSemiHomClass
Finset.mem_range
basis_eq_pow
Module.Basis.constr_basis
constr_pow_algebraMap πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
minpoly
gen
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Algebra.toModule
LinearMap.instFunLike
LinearEquiv
RingHomInvPair.ids
Pi.addCommMonoid
dim
LinearMap.addCommMonoid
Pi.Function.module
LinearMap.module
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
CommRing.toRing
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.constr
basis
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
RingHom
RingHom.instFunLike
algebraMap
β€”RingHomInvPair.ids
smulCommClass_self
Polynomial.aeval_C
constr_pow_aeval
constr_pow_gen πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
minpoly
gen
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Algebra.toModule
LinearMap.instFunLike
LinearEquiv
RingHomInvPair.ids
Pi.addCommMonoid
dim
LinearMap.addCommMonoid
Pi.Function.module
LinearMap.module
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
CommRing.toRing
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.constr
basis
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”RingHomInvPair.ids
smulCommClass_self
Polynomial.aeval_X
constr_pow_aeval
constr_pow_mul πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
minpoly
gen
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Algebra.toModule
LinearMap.instFunLike
LinearEquiv
RingHomInvPair.ids
Pi.addCommMonoid
dim
LinearMap.addCommMonoid
Pi.Function.module
LinearMap.module
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
CommRing.toRing
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.constr
basis
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”RingHomInvPair.ids
smulCommClass_self
exists_eq_aeval'
constr_pow_aeval
degree_minpoly πŸ“–mathematicalβ€”Polynomial.degree
CommSemiring.toSemiring
CommRing.toCommSemiring
minpoly
gen
WithBot
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
dim
β€”minpolyGen_eq
degree_minpolyGen
degree_minpolyGen πŸ“–mathematicalβ€”Polynomial.degree
CommSemiring.toSemiring
CommRing.toCommSemiring
minpolyGen
WithBot
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
dim
β€”Polynomial.degree_sub_eq_left_of_degree_lt
Polynomial.degree_X_pow
Polynomial.degree_sum_fin_lt
dim_le_degree_of_root πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
gen
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
dim
Polynomial.degree
β€”Polynomial.degree_eq_natDegree
WithBot.coe_le_coe
dim_le_natDegree_of_root
dim_le_natDegree_of_root πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
gen
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
dim
Polynomial.natDegree
β€”le_of_not_gt
Polynomial.as_sum_range'
Finset.sum_range
Fintype.sum_eq_zero
Fintype.linearIndependent_iff
Module.Basis.linearIndependent
Finset.sum_congr
basis_eq_pow
Polynomial.aeval_eq_sum_range'
Polynomial.monomial_zero_right
dim_ne_zero πŸ“–β€”β€”β€”β€”not_nonempty_iff
Fin.isEmpty
Module.Basis.index_nonempty
dim_pos πŸ“–mathematicalβ€”dimβ€”dim_ne_zero
equivOfMinpoly_aeval πŸ“–mathematicalminpoly
gen
DFunLike.coe
AlgEquiv
CommRing.toCommSemiring
Ring.toSemiring
AlgEquiv.instFunLike
equivOfMinpoly
AlgHom
Polynomial
CommSemiring.toSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
β€”equivOfRoot_aeval
equivOfMinpoly_apply πŸ“–mathematicalminpoly
gen
DFunLike.coe
AlgEquiv
CommRing.toCommSemiring
Ring.toSemiring
AlgEquiv.instFunLike
equivOfMinpoly
AlgHom
AlgHom.funLike
lift
β€”β€”
equivOfMinpoly_gen πŸ“–mathematicalminpoly
gen
DFunLike.coe
AlgEquiv
CommRing.toCommSemiring
Ring.toSemiring
AlgEquiv.instFunLike
equivOfMinpoly
β€”equivOfRoot_gen
equivOfMinpoly_map πŸ“–mathematicalminpoly
gen
CommRing.toRing
map
equivOfMinpolyβ€”equivOfRoot_map
equivOfMinpoly_symm πŸ“–mathematicalminpoly
gen
AlgEquiv.symm
CommRing.toCommSemiring
Ring.toSemiring
equivOfMinpoly
Polynomial
CommSemiring.toSemiring
β€”β€”
equivOfRoot_aeval πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
gen
minpoly
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AlgEquiv
AlgEquiv.instFunLike
equivOfRoot
β€”lift_aeval
equivOfRoot_apply πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
gen
minpoly
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AlgEquiv
AlgEquiv.instFunLike
equivOfRoot
lift
β€”β€”
equivOfRoot_gen πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
gen
minpoly
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AlgEquiv
AlgEquiv.instFunLike
equivOfRoot
β€”lift_gen
equivOfRoot_map πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
gen
minpoly
CommRing.toRing
map
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
equivOfRootβ€”AlgEquiv.ext
exists_eq_aeval'
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
equivOfRoot_aeval
Polynomial.aeval_algEquiv
equivOfRoot_symm πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
gen
minpoly
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AlgEquiv.symm
equivOfRoot
β€”β€”
exists_eq_aeval πŸ“–mathematicalβ€”Polynomial.natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
dim
DFunLike.coe
AlgHom
Polynomial
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
gen
β€”mem_span_pow
dim_ne_zero
coe_basis
Module.Basis.mem_span
exists_eq_aeval' πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
gen
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
exists_eq_aeval
exists_gen_dvd_sub πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
gen
CommRing.toRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”Ideal.instIsTwoSided_1
map_sub
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
exists_smodEq
exists_smodEq πŸ“–mathematicalβ€”SModEq
CommRing.toRing
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.span
Set
Set.instSingletonSet
gen
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
β€”subsingleton_or_nontrivial
SModEq.eq_1
Subsingleton.eq_zero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
RingHomInvPair.ids
dim_pos
Module.Basis.sum_repr
add_zero
Submodule.Quotient.mk_add
Finset.sum_insert
Finset.notMem_erase
Finset.insert_erase
Finset.mem_univ
Ideal.instIsTwoSided_1
coe_basis
pow_zero
Algebra.algebraMap_eq_smul_one
Submodule.Quotient.mk_zero
Submodule.Quotient.mk_eq_zero
Ideal.sum_mem
Algebra.smul_def'
Ideal.mul_mem_left
Ideal.pow_mem_of_mem
Ideal.subset_span
finite πŸ“–mathematicalβ€”Module.Finite
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Algebra.toModule
Ring.toSemiring
β€”Module.Finite.of_basis
Finite.of_fintype
finrank πŸ“–mathematicalβ€”Module.finrank
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Algebra.toModule
Ring.toSemiring
dim
β€”Module.finrank_eq_card_basis
Fintype.card_fin
isIntegral_gen πŸ“–mathematicalβ€”IsIntegral
gen
β€”minpolyGen_monic
aeval_minpolyGen
leftMulMatrix πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Matrix
dim
CommRing.toCommSemiring
Ring.toSemiring
Matrix.semiring
CommSemiring.toSemiring
Fin.fintype
Matrix.instAlgebra
Algebra.id
AlgHom.funLike
Algebra.leftMulMatrix
basis
gen
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Matrix.of
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
Polynomial.coeff
minpolyGen
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”subsingleton_or_nontrivial
Matrix.subsingleton
RingHomInvPair.ids
smulCommClass_self
Finite.of_fintype
IsScalarTower.left
Algebra.leftMulMatrix_apply
LinearEquiv.eq_symm_apply
LinearMap.toMatrix_symm
Module.Basis.ext
Matrix.toLin_self
Finset.sum_congr
basis_eq_pow
pow_succ'
neg_smul
Finset.sum_neg_distrib
add_comm
Polynomial.aeval_eq_sum_range
Finset.sum_range_succ
Polynomial.leadingCoeff.eq_1
Polynomial.Monic.leadingCoeff
minpolyGen_monic
one_smul
natDegree_minpolyGen
Finset.sum_range
aeval_minpolyGen
lt_of_le_of_ne
Fintype.sum_eq_single
zero_smul
liftEquiv'_apply_coe πŸ“–mathematicalβ€”Multiset
Multiset.instMembership
Polynomial.aroots
minpoly
gen
DFunLike.coe
Equiv
AlgHom
CommRing.toCommSemiring
Ring.toSemiring
CommSemiring.toSemiring
EquivLike.toFunLike
Equiv.instEquivLike
liftEquiv'
CommRing.toRing
AlgHom.funLike
β€”β€”
liftEquiv'_symm_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
CommRing.toCommSemiring
Ring.toSemiring
CommRing.toRing
AlgHom.funLike
Equiv
Multiset
Multiset.instMembership
Polynomial.aroots
minpoly
gen
CommSemiring.toSemiring
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
liftEquiv'
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Algebra.toModule
LinearMap.instFunLike
LinearEquiv
Pi.addCommMonoid
dim
LinearMap.addCommMonoid
Pi.Function.module
LinearMap.module
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.constr
basis
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”β€”
liftEquiv_apply_coe πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
minpoly
gen
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
liftEquiv
β€”β€”
liftEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
minpoly
gen
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
liftEquiv
lift
β€”β€”
lift_aeval πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
minpoly
gen
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
liftβ€”constr_pow_aeval
lift_gen πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
minpoly
gen
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
liftβ€”constr_pow_gen
map_basis πŸ“–mathematicalβ€”basis
CommRing.toRing
map
Module.Basis.map
dim
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Algebra.toModule
Ring.toSemiring
AlgEquiv.toLinearEquiv
β€”β€”
map_dim πŸ“–mathematicalβ€”dim
CommRing.toRing
map
β€”β€”
map_gen πŸ“–mathematicalβ€”gen
CommRing.toRing
map
DFunLike.coe
AlgEquiv
CommRing.toCommSemiring
Ring.toSemiring
CommSemiring.toSemiring
AlgEquiv.instFunLike
β€”β€”
mem_span_pow πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Algebra.toModule
Ring.toSemiring
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.range
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.natDegree
DFunLike.coe
AlgHom
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
β€”mem_span_pow'
lt_of_le_of_ne
Polynomial.degree_eq_natDegree
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
WithBot.charZero
Nat.instCharZero
WithBot.bot_lt_coe
mem_span_pow' πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Algebra.toModule
Ring.toSemiring
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.range
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
DFunLike.coe
AlgHom
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
β€”Set.ext
Finset.sum_congr
Algebra.smul_def
Polynomial.evalβ‚‚_eq_sum
minpolyGen_eq πŸ“–mathematicalβ€”minpolyGen
minpoly
gen
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Unique.instSubsingleton
minpoly.unique'
minpolyGen_monic
aeval_minpolyGen
LE.le.not_gt
dim_le_degree_of_root
degree_minpolyGen
minpolyGen_map πŸ“–mathematicalβ€”minpolyGen
CommRing.toRing
map
β€”minpolyGen_eq
minpoly.algEquiv_eq
minpolyGen_monic πŸ“–mathematicalβ€”Polynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
minpolyGen
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Polynomial.Monic.sub_of_left
Polynomial.monic_X_pow
Polynomial.degree_X_pow
Polynomial.degree_sum_fin_lt
natDegree_minpoly πŸ“–mathematicalβ€”Polynomial.natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
minpoly
gen
dim
β€”minpolyGen_eq
natDegree_minpolyGen
natDegree_minpolyGen πŸ“–mathematicalβ€”Polynomial.natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
minpolyGen
dim
β€”Polynomial.natDegree_eq_of_degree_eq_some
degree_minpolyGen

PowerBasis.AlgHom

Definitions

NameCategoryTheorems
fintype πŸ“–CompOp
5 mathmath: sum_embeddings_eq_finrank_mul, AlgHom.card_of_powerBasis, trace_eq_sum_embeddings_gen, Algebra.norm_eq_prod_embeddings_gen, Algebra.prod_embeddings_eq_finrank_pow

(root)

Definitions

NameCategoryTheorems
PowerBasis πŸ“–CompDataβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
linearIndependent_pow πŸ“–mathematicalβ€”LinearIndependent
Polynomial.natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
minpoly
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Algebra.toModule
Semifield.toCommSemiring
β€”Fintype.linearIndependent_iff
Function.mtr
LE.le.not_gt
minpoly.degree_le_of_ne_zero
Finset.mem_univ
Finset.sum_ite_eq'
Finset.sum_congr
Polynomial.coeff_monomial
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Algebra.smul_def
Polynomial.degree_sum_fin_lt
Polynomial.degree_eq_natDegree
minpoly.ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
minpoly.eq_zero
Polynomial.natDegree_zero
linearIndependent_empty_type
Fin.isEmpty'

---

← Back to Index