| Name | Category | Theorems |
basis π | CompOp | 31 mathmath: IsCyclotomicExtension.discr_prime_pow_eq_unit_mul_pow, IsCyclotomicExtension.discr_odd_prime, map_basis, IsCyclotomicExtension.Rat.discr_prime_pow', Algebra.discr_powerBasis_eq_norm, leftMulMatrix, coe_basis, charpoly_leftMulMatrix, constr_pow_algebraMap, IsPrimitiveRoot.discr_zeta_eq_discr_zeta_sub_one, repr_gen_pow_isIntegral, Algebra.embeddingsMatrixReindex_eq_vandermonde, IsCyclotomicExtension.Rat.discr_prime_pow_ne_two', IsCyclotomicExtension.discr_prime_pow_ne_two, IsAdjoinRootMonic.powerBasis_basis, constr_pow_gen, toMatrix_isIntegral, basis_eq_pow, Algebra.discr_mul_isIntegral_mem_adjoin, Algebra.discr_powerBasis_eq_prod, Algebra.discr_powerBasis_eq_prod'', Algebra.discr_powerBasis_eq_prod', liftEquiv'_symm_apply_apply, constr_pow_mul, Module.Basis.traceDual_powerBasis_eq, IsCyclotomicExtension.Rat.discr_odd_prime', constr_pow_aeval, Algebra.traceForm_toMatrix_powerBasis, IsCyclotomicExtension.Rat.discr_prime_pow_eq_unit_mul_pow', IsCyclotomicExtension.discr_prime_pow, IsCyclotomicExtension.discr_prime_pow_ne_two'
|
dim π | CompOp | 57 mathmath: exists_eq_aeval, IsCyclotomicExtension.discr_prime_pow_eq_unit_mul_pow, Algebra.PowerBasis.norm_gen_eq_coeff_zero_minpoly, IsCyclotomicExtension.discr_odd_prime, ofAdjoinEqTop'_dim, map_dim, IsAdjoinRootMonic.powerBasis_dim, map_basis, IsPrimitiveRoot.powerBasis_dim, AdjoinRoot.powerBasis'_dim, IsCyclotomicExtension.Rat.discr_prime_pow', finrank, Algebra.discr_powerBasis_eq_norm, leftMulMatrix, coe_basis, natDegree_minpolyGen, charpoly_leftMulMatrix, constr_pow_algebraMap, Algebra.adjoin.powerBasis_dim, IsPrimitiveRoot.power_basis_int'_dim, IsPrimitiveRoot.discr_zeta_eq_discr_zeta_sub_one, repr_gen_pow_isIntegral, Algebra.embeddingsMatrixReindex_eq_vandermonde, IsPrimitiveRoot.integralPowerBasisOfPrimePow_dim, degree_minpoly, Algebra.adjoin.powerBasis'_dim, IsCyclotomicExtension.Rat.discr_prime_pow_ne_two', IsCyclotomicExtension.discr_prime_pow_ne_two, constr_pow_gen, AlgHom.card_of_powerBasis, toMatrix_isIntegral, basis_eq_pow, Algebra.discr_mul_isIntegral_mem_adjoin, IsPrimitiveRoot.subOnePowerBasis_dim, dim_pos, Algebra.discr_powerBasis_eq_prod, ofGenMemAdjoin'_dim, AdjoinRoot.powerBasis_dim, degree_minpolyGen, AlgHom.natCard_of_powerBasis, IsPrimitiveRoot.integralPowerBasis_dim, ofAdjoinEqTop_dim, Algebra.discr_powerBasis_eq_prod'', dim_le_natDegree_of_root, Algebra.discr_powerBasis_eq_prod', liftEquiv'_symm_apply_apply, constr_pow_mul, Module.Basis.traceDual_powerBasis_eq, IsCyclotomicExtension.Rat.discr_odd_prime', natDegree_minpoly, constr_pow_aeval, Algebra.traceForm_toMatrix_powerBasis, dim_le_degree_of_root, IntermediateField.adjoin.powerBasis_dim, IsCyclotomicExtension.Rat.discr_prime_pow_eq_unit_mul_pow', IsCyclotomicExtension.discr_prime_pow, IsCyclotomicExtension.discr_prime_pow_ne_two'
|
equivOfMinpoly π | CompOp | 6 mathmath: equivOfMinpoly_map, equivOfMinpoly_gen, equivOfMinpoly_aeval, equivOfMinpoly_apply, equivOfMinpoly_symm, IsCyclotomicExtension.autEquivPow_symm_apply
|
equivOfRoot π | CompOp | 5 mathmath: equivOfRoot_symm, equivOfRoot_apply, equivOfRoot_aeval, equivOfRoot_map, equivOfRoot_gen
|
gen π | CompOp | 65 mathmath: IsPrimitiveRoot.subOneIntegralPowerBasis_gen_prime, exists_eq_aeval, Algebra.PowerBasis.norm_gen_eq_coeff_zero_minpoly, isIntegral_gen, quotientEquivQuotientMinpolyMap_apply, IsPrimitiveRoot.subOneIntegralPowerBasis_gen, equivAdjoinSimple_symm_aeval, AdjoinRoot.powerBasis'_gen, IsPrimitiveRoot.integralPowerBasisOfPrimePow_gen, IsPrimitiveRoot.powerBasis_gen_mem_adjoin_zeta_sub_one, Algebra.discr_powerBasis_eq_norm, quotientEquivQuotientMinpolyMap_apply_mk, IsPrimitiveRoot.subOneIntegralPowerBasis'_gen_prime, map_gen, IntermediateField.adjoin.powerBasis_gen, leftMulMatrix, quotientEquivQuotientMinpolyMap_symm_apply_mk, coe_basis, IsPrimitiveRoot.powerBasis_gen, charpoly_leftMulMatrix, IsPrimitiveRoot.integralPowerBasis'_gen, liftEquiv_symm_apply, equivAdjoinSimple_aeval, IsPrimitiveRoot.subOneIntegralPowerBasis'_gen, trace_gen_eq_nextCoeff_minpoly, exists_smodEq, IsAdjoinRootMonic.powerBasis_gen, adjoin_gen_eq_top, Algebra.embeddingsMatrixReindex_eq_vandermonde, sum_embeddings_eq_finrank_mul, degree_minpoly, equivAdjoinSimple_gen, equivAdjoinSimple_symm_gen, Algebra.adjoin.powerBasis_gen, basis_eq_pow, quotientEquivQuotientMinpolyMap_symm_apply, IsPrimitiveRoot.subOnePowerBasis_gen, ofAdjoinEqTop_gen, Algebra.discr_powerBasis_eq_prod, exists_eq_aeval', minpolyGen_eq, exists_gen_dvd_sub, Module.Basis.PowerBasis_gen, liftEquiv'_apply_coe, Algebra.adjoin.powerBasis'_minpoly_gen, AdjoinRoot.minpoly_powerBasis_gen, IsPrimitiveRoot.subOneIntegralPowerBasisOfPrimePow_gen, Algebra.discr_powerBasis_eq_prod'', IsPrimitiveRoot.integralPowerBasis_gen, Algebra.discr_powerBasis_eq_prod', liftEquiv'_symm_apply_apply, conductor_eq_top_of_powerBasis, Module.Basis.traceDual_powerBasis_eq, Algebra.adjoin.powerBasis'_gen, ofAdjoinEqTop'_gen, natDegree_minpoly, aeval_minpolyGen, Algebra.traceForm_toMatrix_powerBasis, AdjoinRoot.minpoly_powerBasis_gen_of_monic, Algebra.prod_embeddings_eq_finrank_pow, ofGenMemAdjoin'_gen, WeierstrassCurve.Affine.CoordinateRing.basis_apply, IsPrimitiveRoot.subOneIntegralPowerBasisOfPrimePow_gen_prime, AdjoinRoot.powerBasis_gen, liftEquiv_apply_coe
|
liftEquiv π | CompOp | 2 mathmath: liftEquiv_symm_apply, liftEquiv_apply_coe
|
liftEquiv' π | CompOp | 2 mathmath: liftEquiv'_apply_coe, liftEquiv'_symm_apply_apply
|
map π | CompOp | 4 mathmath: map_dim, map_basis, map_gen, minpolyGen_map
|
minpolyGen π | CompOp | 7 mathmath: minpolyGen_monic, leftMulMatrix, natDegree_minpolyGen, minpolyGen_map, minpolyGen_eq, degree_minpolyGen, aeval_minpolyGen
|