Documentation Verification Report

Derivative

πŸ“ Source: Mathlib/RingTheory/PowerSeries/Derivative.lean

Statistics

MetricCount
Definitionsderivative, derivativeFun, Β«termD⁄dXΒ»
3
Theoremscoeff_derivative, coeff_derivativeFun, ext, derivativeFun_C, derivativeFun_add, derivativeFun_coe, derivativeFun_mul, derivativeFun_one, derivativeFun_smul, derivative_C, derivative_X, derivative_coe, derivative_inv, derivative_inv', derivative_invOf, derivative_pow, derivative_subst, trunc_derivative, trunc_derivative', trunc_derivativeFun
20
Total23

PowerSeries

Definitions

NameCategoryTheorems
derivative πŸ“–CompOp
12 mathmath: derivative_exp, derivative_inv', derivative_invOf, derivative_coe, coeff_derivative, derivative_subst, derivative_C, trunc_derivative, derivative_inv, derivative_X, derivative_pow, trunc_derivative'
derivativeFun πŸ“–CompOp
8 mathmath: derivativeFun_smul, coeff_derivativeFun, derivativeFun_C, derivativeFun_coe, derivativeFun_one, derivativeFun_add, trunc_derivativeFun, derivativeFun_mul
Β«termD⁄dXΒ» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coeff_derivative πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
Derivation
instCommSemiring
instAlgebra
Algebra.id
Derivation.instFunLike
derivative
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddMonoidWithOne.toOne
β€”coeff_derivativeFun
coeff_derivativeFun πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
derivativeFun
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddMonoidWithOne.toOne
β€”derivativeFun.eq_1
derivativeFun_C πŸ“–mathematicalβ€”derivativeFun
DFunLike.coe
RingHom
PowerSeries
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instSemiring
RingHom.instFunLike
C
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”ext
coeff_derivativeFun
coeff_succ_C
MulZeroClass.zero_mul
LinearMap.map_zero
derivativeFun_add πŸ“–mathematicalβ€”derivativeFun
PowerSeries
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiring
CommSemiring.toSemiring
β€”ext
coeff_derivativeFun
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
add_mul
Distrib.rightDistribClass
derivativeFun_coe πŸ“–mathematicalβ€”derivativeFun
Polynomial.toPowerSeries
CommSemiring.toSemiring
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Polynomial.semiring
Polynomial.module
Semiring.toModule
LinearMap.instFunLike
Polynomial.derivative
β€”ext
coeff_derivativeFun
Polynomial.coeff_coe
Polynomial.coeff_derivative
derivativeFun_mul πŸ“–mathematicalβ€”derivativeFun
PowerSeries
MvPowerSeries.instMul
CommSemiring.toSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiring
Algebra.toSMul
instCommSemiring
Algebra.id
β€”ext
coeff_derivativeFun
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
coeff_mul_eq_coeff_trunc_mul_trunc
smul_eq_mul
coeff_mul_eq_coeff_trunc_mul_truncβ‚‚
trunc_derivativeFun
derivativeFun_one πŸ“–mathematicalβ€”derivativeFun
PowerSeries
MvPowerSeries.instOne
CommSemiring.toSemiring
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
derivativeFun_C
derivativeFun_smul πŸ“–mathematicalβ€”derivativeFun
PowerSeries
Algebra.toSMul
instSemiring
CommSemiring.toSemiring
instAlgebra
Algebra.id
β€”smul_eq_C_mul
derivativeFun_mul
derivativeFun_C
smul_zero
add_zero
smul_eq_mul
derivative_C πŸ“–mathematicalβ€”DFunLike.coe
Derivation
PowerSeries
instCommSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instAlgebra
Algebra.id
Semiring.toModule
instModule
Derivation.instFunLike
derivative
RingHom
instSemiring
RingHom.instFunLike
C
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”derivativeFun_C
derivative_X πŸ“–mathematicalβ€”DFunLike.coe
Derivation
PowerSeries
instCommSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instAlgebra
Algebra.id
Semiring.toModule
instModule
Derivation.instFunLike
derivative
X
MvPowerSeries.instOne
β€”ext
coeff_derivative
coeff_X
AddRightCancelSemigroup.toIsRightCancelAdd
boole_mul
coeff_one
Nat.cast_zero
zero_add
derivative_coe πŸ“–mathematicalβ€”DFunLike.coe
Derivation
PowerSeries
instCommSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instAlgebra
Algebra.id
Semiring.toModule
instModule
Derivation.instFunLike
derivative
Polynomial.toPowerSeries
LinearMap
RingHom.id
Polynomial
Polynomial.semiring
Polynomial.module
LinearMap.instFunLike
Polynomial.derivative
β€”derivativeFun_coe
derivative_inv πŸ“–mathematicalβ€”DFunLike.coe
Derivation
PowerSeries
CommRing.toCommSemiring
instCommSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instAlgebra
Algebra.id
Semiring.toModule
instModule
Derivation.instFunLike
derivative
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
Units
Units.instInv
MvPowerSeries.instMul
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroup
Ring.toAddCommGroup
CommRing.toRing
Monoid.toNatPow
β€”Derivation.leibniz_of_mul_eq_one
Units.inv_mul
derivative_inv' πŸ“–mathematicalβ€”DFunLike.coe
Derivation
PowerSeries
Semifield.toCommSemiring
Field.toSemifield
instCommSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instAlgebra
Algebra.id
Semiring.toModule
instModule
Derivation.instFunLike
derivative
instInv
MvPowerSeries.instMul
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroup
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
β€”MvPowerSeries.inv_eq_zero
pow_two
MulZeroClass.zero_mul
neg_zero
map_zero
AddMonoidHomClass.toZeroHomClass
Derivation.instAddMonoidHomClass
Derivation.leibniz_of_mul_eq_one
inv_mul_cancel
derivative_invOf πŸ“–mathematicalβ€”DFunLike.coe
Derivation
PowerSeries
CommRing.toCommSemiring
instCommSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instAlgebra
Algebra.id
Semiring.toModule
instModule
Derivation.instFunLike
derivative
Invertible.invOf
MvPowerSeries.instMul
MvPowerSeries.instOne
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroup
Ring.toAddCommGroup
CommRing.toRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
β€”Derivation.leibniz_invOf
smul_eq_mul
derivative_pow πŸ“–mathematicalβ€”DFunLike.coe
Derivation
PowerSeries
CommRing.toCommSemiring
instCommSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instAlgebra
Algebra.id
Semiring.toModule
instModule
Derivation.instFunLike
derivative
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
MvPowerSeries.instMul
AddMonoidWithOne.toNatCast
MvPowerSeries.instAddMonoidWithOne
β€”pow_zero
Derivation.map_one_eq_zero
Nat.cast_zero
zero_tsub
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
mul_one
MulZeroClass.zero_mul
pow_succ
Derivation.leibniz
add_tsub_cancel_right
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
one_mul
MulZeroClass.mul_zero
add_zero
zero_add
Nat.cast_one
Nat.cast_add
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.mul_one
derivative_subst πŸ“–mathematicalHasSubstDFunLike.coe
Derivation
PowerSeries
CommRing.toCommSemiring
instCommSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instAlgebra
Algebra.id
Semiring.toModule
instModule
Derivation.instFunLike
derivative
subst
MvPowerSeries
MvPowerSeries.instMul
β€”ext
Filter.Eventually.exists_forall_of_atTop
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
HasSubst.eventually_coeff_pow_eq_zero
coeff_subst'
finsum_congr
lt_or_ge
coeff_coe_trunc_of_lt
MulZeroClass.mul_zero
Polynomial.coeff_coe
coeff_trunc
Nat.instNoMaxOrder
coeff_derivative
coeff_mul
Finset.sum_congr
MulZeroClass.zero_mul
trunc_derivative πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries
Polynomial
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Polynomial.semiring
instModule
Semiring.toModule
Polynomial.module
LinearMap.instFunLike
trunc
Derivation
instCommSemiring
instAlgebra
Algebra.id
Derivation.instFunLike
derivative
Polynomial.derivative
β€”trunc_derivativeFun
trunc_derivative' πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries
Polynomial
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Polynomial.semiring
instModule
Semiring.toModule
Polynomial.module
LinearMap.instFunLike
trunc
Derivation
instCommSemiring
instAlgebra
Algebra.id
Derivation.instFunLike
derivative
Polynomial.derivative
β€”zero_tsub
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
trunc_derivative
zero_add
trunc_one_left
coeff_zero_eq_constantCoeff
Polynomial.derivative_C
Polynomial.derivative_zero
add_tsub_cancel_right
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
trunc_derivativeFun πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries
Polynomial
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Polynomial.semiring
instModule
Semiring.toModule
Polynomial.module
LinearMap.instFunLike
trunc
derivativeFun
Polynomial.derivative
β€”Polynomial.ext
coeff_trunc
coeff_derivativeFun
Polynomial.coeff_derivative
MulZeroClass.zero_mul

PowerSeries.derivative

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”DFunLike.coe
Derivation
PowerSeries
CommRing.toCommSemiring
PowerSeries.instCommSemiring
PowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
PowerSeries.instAlgebra
Algebra.id
Semiring.toModule
PowerSeries.instModule
Derivation.instFunLike
PowerSeries.derivative
RingHom
PowerSeries.instSemiring
RingHom.instFunLike
PowerSeries.constantCoeff
β€”β€”PowerSeries.ext
PowerSeries.coeff_zero_eq_constantCoeff
IsAddTorsionFree.to_isTorsionFree_nat
Nat.instIsCancelMulZero
nsmul_eq_mul
mul_comm
Nat.cast_succ
PowerSeries.coeff_derivative

---

← Back to Index