Documentation Verification Report

GaussNorm

πŸ“ Source: Mathlib/RingTheory/PowerSeries/GaussNorm.lean

Statistics

MetricCount
DefinitionsgaussNorm
1
TheoremsgaussNorm_eq_zero_iff, gaussNorm_nonneg, gaussNorm_zero, le_gaussNorm
4
Total5

PowerSeries

Definitions

NameCategoryTheorems
gaussNorm πŸ“–CompOp
7 mathmath: gaussNorm_monomial, gaussNorm_zero, gaussNorm_C, gaussNorm_eq_zero_iff, le_gaussNorm, Polynomial.gaussNorm_coe_powerSeries, gaussNorm_nonneg

Theorems

NameKindAssumesProvesValidatesDepends On
gaussNorm_eq_zero_iff πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Real
Real.instLT
Real.instZero
BddAbove
Real.instLE
Set.range
Real.instMul
DFunLike.coe
LinearMap
RingHom.id
PowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
Monoid.toNatPow
Real.instMonoid
gaussNorm
instZero
β€”Mathlib.Tactic.Contrapose.contrapose₁
ne_of_gt
exists_coeff_ne_zero_iff_ne_zero
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
lt_of_le_of_ne'
NonnegHomClass.apply_nonneg
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
le_ciSup
gaussNorm_zero
gaussNorm_nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
gaussNorm
β€”mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
NonnegHomClass.apply_nonneg
pow_nonneg
Real.instZeroLEOneClass
le_of_lt
zero_lt_one
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
le_ciSup
ciSup_of_not_bddAbove
Real.sSup_empty
gaussNorm_zero πŸ“–mathematicalβ€”gaussNorm
PowerSeries
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Real
Real.instZero
β€”map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
MulZeroClass.zero_mul
ciSup_const
le_gaussNorm πŸ“–mathematicalBddAbove
Real
Real.instLE
setOf
Real.instMul
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
Monoid.toNatPow
Real.instMonoid
gaussNormβ€”le_ciSup

---

← Back to Index