π Source: Mathlib/RingTheory/PowerSeries/Order.lean
divXPowOrder
divXPowOrderHom
orderHom
X_pow_order_dvd
X_pow_order_mul_divXPowOrder
coe_divXPowOrderHom
coe_orderHom
coe_toNat_order
coeff_divXPowOrder
coeff_mul_of_lt_order
coeff_mul_one_sub_of_lt_order
coeff_mul_prod_one_sub_of_lt_order
coeff_of_lt_order
coeff_of_lt_order_toNat
coeff_order
constantCoeff_divXPowOrder
constantCoeff_divXPowOrder_eq_zero_iff
divXPowOrder_X
divXPowOrder_mul
divXPowOrder_mul_divXPowOrder
divXPowOrder_one
divXPowOrder_pow
divXPowOrder_prod
divXPowOrder_zero
exists_coeff_ne_zero_iff_ne_zero
le_order
le_order_map
le_order_mul
le_order_pow
le_order_pow_of_constantCoeff_eq_zero
le_order_prod
le_order_smul
min_order_le_order_add
nat_le_order
one_le_order_iff_constCoeff_eq_zero
order_X
order_X_pow
order_add_of_order_eq
order_add_of_order_ne
order_eq
order_eq_emultiplicity_X
order_eq_nat
order_eq_order
order_eq_top
order_finite_iff_ne_zero
order_le
order_monomial
order_monomial_of_ne_zero
order_mul
order_mul_ge
order_ne_zero_iff_constCoeff_eq_zero
order_neg
order_one
order_pow
order_prod
order_toSubring
order_zero
order_zero_of_unit
eq_divided_by_X_pow_order_Iff_Unit
Inv_divided_by_X_pow_order_leftInv
isUnit_divided_by_X_pow_order
Unit_of_divided_by_X_pow_order_nonzero
Inv_divided_by_X_pow_order_rightInv
PowerSeries
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Semiring.toNonUnitalSemiring
instSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
ENat.toNat
order
MvPowerSeries.instMul
ext
coeff_X_pow_mul'
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
MonoidHom.instFunLike
Multiplicative
ENat
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
CommSemiring.toSemiring
instCommSemiringENat
ENat.instNatCast
ENat.coe_toNat_eq_self
Iff.not
LinearMap
RingHom.id
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
coeff_mul
Finset.sum_congr
mul_eq_zero_of_right
lt_of_le_of_lt
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Finset.HasAntidiagonal.mem_antidiagonal
Finset.sum_const_zero
Ring.toSemiring
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
instAddGroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
MvPowerSeries.instOne
mul_sub
mul_one
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
sub_zero
CommRing.toCommSemiring
Finset.prod
CommRing.toCommMonoid
instCommRing
CommRing.toRing
Finset.induction_on
instIsEmptyFalse
Finset.prod_insert
mul_assoc
mul_right_comm
Mathlib.Tactic.Contrapose.contraposeβ
map_zero
AddMonoidHomClass.toZeroHomClass
ENat.coe_lt_coe
Nat.find_spec
RingHom
RingHom.instFunLike
constantCoeff
zero_add
instZero
coeff_X
coeff_one
MulZeroClass.zero_mul
MulZeroClass.mul_zero
X_pow_mul_cancel
ENat.toNat_add
X_pow_mul
pow_add
add_comm
add_zero
map_pow
MonoidHom.instMonoidHomClass
CommSemiring.toCommMonoid
instCommSemiring
map_prod
Mathlib.Tactic.Contrapose.contrapose_iffβ
Preorder.toLE
map
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
Finset.sum_eq_zero
ne_of_lt
lt_of_lt_of_le
add_le_add
covariant_swap_add_of_covariant_add
Nat.cast_add
AddMonoid.toNatSMul
zero_nsmul
pow_zero
add_smul
one_smul
pow_succ
le_imp_le_of_le_of_le
add_le_add_left
le_refl
LE.le.trans
nsmul_eq_mul
le_mul_of_one_le_right'
CanonicallyOrderedAdd.toMulLeftMono
Finset.sum
LinearOrderedAddCommMonoidWithTop.toAddCommMonoid
instLinearOrderedAddCommMonoidWithTopENat
Finset.cons_induction
Finset.sum_cons
Finset.prod_cons
add_le_add_right
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
instAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Module.toDistribMulAction
map_smul
SemilinearMapClass.toMulActionSemiHomClass
SemilatticeInf.toMin
map_add
SemilinearMapClass.toAddHomClass
AddMonoidWithOne.toOne
coeff_zero_eq_constantCoeff
CharP.cast_eq_zero
CharP.ofCharZero
Order.one_le_iff_pos
NeZero.charZero_one
Nat.cast_lt_one
Nat.cast_one
one_ne_zero
NeZero.one
X_pow_eq
le_antisymm
Ne.lt_or_gt
inf_comm
emultiplicity
eq_or_ne
emultiplicity_zero
Order.le_of_lt_add_one
not_le
pow_dvd_iff_le_emultiplicity
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
Nat.instZeroLEOneClass
le_emultiplicity_of_pow_dvd
MvPowerSeries.order
eq_of_le_of_ge
MvPowerSeries.le_order
Finset.sum_eq_single
coeff_def
MvPowerSeries.coeff_of_lt_order
Finsupp.degree_single
Top.top
instTopENat
Iff.not_left
order.eq_1
le_rfl
monomial
coeff_monomial_same
coeff_monomial
top_add
add_top
ENat.coe_add
Finset.sum_eq_single_of_mem
trichotomy_of_add_eq_add
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
mul_ne_zero
ENat.one_le_iff_ne_zero
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroup
Ring.toAddCommGroup
neg_add_cancel
neg_zero
instZeroENat
monomial_zero_eq_C
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
Subring
SetLike.instMembership
Subring.instSetLike
Subring.toRing
toSubring
coeff_toSubring
Nat.cast_zero
IsUnit
add_eq_zero
Unique.instSubsingleton
nonpos_iff_eq_zero
---
β Back to Index