Documentation Verification Report

Order

πŸ“ Source: Mathlib/RingTheory/PowerSeries/Order.lean

Statistics

MetricCount
DefinitionsdivXPowOrder, divXPowOrderHom, orderHom
3
TheoremsX_pow_order_dvd, X_pow_order_mul_divXPowOrder, coe_divXPowOrderHom, coe_orderHom, coe_toNat_order, coeff_divXPowOrder, coeff_mul_of_lt_order, coeff_mul_one_sub_of_lt_order, coeff_mul_prod_one_sub_of_lt_order, coeff_of_lt_order, coeff_of_lt_order_toNat, coeff_order, constantCoeff_divXPowOrder, constantCoeff_divXPowOrder_eq_zero_iff, divXPowOrder_X, divXPowOrder_mul, divXPowOrder_mul_divXPowOrder, divXPowOrder_one, divXPowOrder_pow, divXPowOrder_prod, divXPowOrder_zero, exists_coeff_ne_zero_iff_ne_zero, le_order, le_order_map, le_order_mul, le_order_pow, le_order_pow_of_constantCoeff_eq_zero, le_order_prod, le_order_smul, min_order_le_order_add, nat_le_order, one_le_order_iff_constCoeff_eq_zero, order_X, order_X_pow, order_add_of_order_eq, order_add_of_order_ne, order_eq, order_eq_emultiplicity_X, order_eq_nat, order_eq_order, order_eq_top, order_finite_iff_ne_zero, order_le, order_monomial, order_monomial_of_ne_zero, order_mul, order_mul_ge, order_ne_zero_iff_constCoeff_eq_zero, order_neg, order_one, order_pow, order_prod, order_toSubring, order_zero, order_zero_of_unit
55
Total58

PowerSeries

Definitions

NameCategoryTheorems
divXPowOrder πŸ“–CompOp
17 mathmath: eq_divided_by_X_pow_order_Iff_Unit, Inv_divided_by_X_pow_order_leftInv, divXPowOrder_prod, divXPowOrder_mul, isUnit_divided_by_X_pow_order, divXPowOrder_one, coe_divXPowOrderHom, constantCoeff_divXPowOrder, divXPowOrder_mul_divXPowOrder, constantCoeff_divXPowOrder_eq_zero_iff, Unit_of_divided_by_X_pow_order_nonzero, divXPowOrder_pow, coeff_divXPowOrder, X_pow_order_mul_divXPowOrder, Inv_divided_by_X_pow_order_rightInv, divXPowOrder_X, divXPowOrder_zero
divXPowOrderHom πŸ“–CompOp
1 mathmath: coe_divXPowOrderHom
orderHom πŸ“–CompOp
1 mathmath: coe_orderHom

Theorems

NameKindAssumesProvesValidatesDepends On
X_pow_order_dvd πŸ“–mathematicalβ€”PowerSeries
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Semiring.toNonUnitalSemiring
instSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
ENat.toNat
order
β€”coeff_of_lt_order_toNat
X_pow_order_mul_divXPowOrder πŸ“–mathematicalβ€”PowerSeries
MvPowerSeries.instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
X
ENat.toNat
order
divXPowOrder
β€”ext
coeff_X_pow_mul'
coeff_divXPowOrder
coeff_of_lt_order_toNat
coe_divXPowOrderHom πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
PowerSeries
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
instSemiring
MonoidHom.instFunLike
divXPowOrderHom
divXPowOrder
β€”β€”
coe_orderHom πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
PowerSeries
Multiplicative
ENat
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
instSemiring
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
CommSemiring.toSemiring
instCommSemiringENat
MonoidHom.instFunLike
orderHom
order
β€”β€”
coe_toNat_order πŸ“–mathematicalβ€”ENat
ENat.instNatCast
ENat.toNat
order
β€”ENat.coe_toNat_eq_self
Iff.not
order_eq_top
coeff_divXPowOrder πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
divXPowOrder
ENat.toNat
order
β€”β€”
coeff_mul_of_lt_order πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
ENat.instNatCast
order
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
MvPowerSeries.instMul
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”coeff_mul
Finset.sum_congr
mul_eq_zero_of_right
coeff_of_lt_order
lt_of_le_of_lt
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Finset.HasAntidiagonal.mem_antidiagonal
Finset.sum_const_zero
coeff_mul_one_sub_of_lt_order πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
ENat.instNatCast
order
Ring.toSemiring
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
MvPowerSeries.instMul
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
instAddGroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
MvPowerSeries.instOne
β€”mul_sub
mul_one
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
coeff_mul_of_lt_order
sub_zero
coeff_mul_prod_one_sub_of_lt_order πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
ENat.instNatCast
order
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
MvPowerSeries.instMul
Finset.prod
CommRing.toCommMonoid
instCommRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
instAddGroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
MvPowerSeries.instOne
β€”Finset.induction_on
instIsEmptyFalse
mul_one
Finset.prod_insert
mul_assoc
mul_right_comm
coeff_mul_one_sub_of_lt_order
coeff_of_lt_order πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
ENat.instNatCast
order
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”Mathlib.Tactic.Contrapose.contrapose₁
order_le
coeff_of_lt_order_toNat πŸ“–mathematicalENat.toNat
order
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
coeff_of_lt_order
coe_toNat_order
ENat.coe_lt_coe
coeff_order πŸ“–β€”β€”β€”β€”Nat.find_spec
constantCoeff_divXPowOrder πŸ“–mathematicalβ€”DFunLike.coe
RingHom
PowerSeries
Semiring.toNonAssocSemiring
instSemiring
RingHom.instFunLike
constantCoeff
divXPowOrder
LinearMap
RingHom.id
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
ENat.toNat
order
β€”coeff_divXPowOrder
zero_add
constantCoeff_divXPowOrder_eq_zero_iff πŸ“–mathematicalβ€”DFunLike.coe
RingHom
PowerSeries
Semiring.toNonAssocSemiring
instSemiring
RingHom.instFunLike
constantCoeff
divXPowOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instZero
β€”divXPowOrder_zero
constantCoeff_divXPowOrder
coeff_order
divXPowOrder_X πŸ“–mathematicalβ€”divXPowOrder
X
PowerSeries
MvPowerSeries.instOne
β€”ext
coeff_divXPowOrder
order_X
coeff_X
coeff_one
divXPowOrder_mul πŸ“–mathematicalβ€”divXPowOrder
PowerSeries
MvPowerSeries.instMul
β€”MulZeroClass.zero_mul
divXPowOrder_zero
MulZeroClass.mul_zero
X_pow_mul_cancel
order_mul
ENat.toNat_add
Iff.not
order_eq_top
X_pow_order_mul_divXPowOrder
mul_assoc
X_pow_mul
pow_add
add_comm
divXPowOrder_mul_divXPowOrder πŸ“–mathematicalβ€”PowerSeries
MvPowerSeries.instMul
divXPowOrder
β€”divXPowOrder_mul
divXPowOrder_one πŸ“–mathematicalβ€”divXPowOrder
PowerSeries
MvPowerSeries.instOne
β€”ext
coeff_divXPowOrder
order_one
add_zero
coeff_one
divXPowOrder_pow πŸ“–mathematicalβ€”divXPowOrder
PowerSeries
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
β€”map_pow
MonoidHom.instMonoidHomClass
divXPowOrder_prod πŸ“–mathematicalβ€”divXPowOrder
CommSemiring.toSemiring
Finset.prod
PowerSeries
CommSemiring.toCommMonoid
instCommSemiring
β€”map_prod
MonoidHom.instMonoidHomClass
divXPowOrder_zero πŸ“–mathematicalβ€”divXPowOrder
PowerSeries
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”ext
coeff_divXPowOrder
order_zero
add_zero
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
exists_coeff_ne_zero_iff_ne_zero πŸ“–β€”β€”β€”β€”Mathlib.Tactic.Contrapose.contrapose_iff₃
le_order πŸ“–mathematicalDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
order
β€”ext
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
nat_le_order
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
le_order_map πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
order
DFunLike.coe
RingHom
PowerSeries
Semiring.toNonAssocSemiring
instSemiring
RingHom.instFunLike
map
β€”le_order
coeff_of_lt_order
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
le_order_mul πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
order
PowerSeries
MvPowerSeries.instMul
β€”le_order
coeff_mul
Finset.sum_eq_zero
coeff_of_lt_order
MulZeroClass.zero_mul
MulZeroClass.mul_zero
ne_of_lt
lt_of_lt_of_le
add_le_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Nat.cast_add
Finset.HasAntidiagonal.mem_antidiagonal
le_order_pow πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
AddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
order
PowerSeries
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
β€”zero_nsmul
pow_zero
add_smul
one_smul
pow_succ
le_imp_le_of_le_of_le
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
le_refl
le_order_mul
le_order_pow_of_constantCoeff_eq_zero πŸ“–mathematicalDFunLike.coe
RingHom
PowerSeries
Semiring.toNonAssocSemiring
instSemiring
RingHom.instFunLike
constantCoeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
ENat.instNatCast
order
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”LE.le.trans
nsmul_eq_mul
le_mul_of_one_le_right'
CanonicallyOrderedAdd.toMulLeftMono
one_le_order_iff_constCoeff_eq_zero
le_order_pow
le_order_prod πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Finset.sum
LinearOrderedAddCommMonoidWithTop.toAddCommMonoid
instLinearOrderedAddCommMonoidWithTopENat
order
CommSemiring.toSemiring
Finset.prod
PowerSeries
CommSemiring.toCommMonoid
instCommSemiring
β€”Finset.cons_induction
Finset.sum_cons
Finset.prod_cons
le_imp_le_of_le_of_le
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
le_refl
le_order_mul
le_order_smul πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
order
PowerSeries
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instAddMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
β€”le_order
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
coeff_of_lt_order
MulZeroClass.mul_zero
min_order_le_order_add πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
SemilatticeInf.toMin
order
PowerSeries
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiring
β€”le_order
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
coeff_of_lt_order
add_zero
nat_le_order πŸ“–mathematicalDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
ENat.instNatCast
order
β€”IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
one_le_order_iff_constCoeff_eq_zero πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
order
DFunLike.coe
RingHom
PowerSeries
instSemiring
RingHom.instFunLike
constantCoeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”coeff_zero_eq_constantCoeff
coeff_of_lt_order
CharP.cast_eq_zero
CharP.ofCharZero
Order.one_le_iff_pos
IsOrderedRing.toZeroLEOneClass
NeZero.charZero_one
le_order
Nat.cast_lt_one
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
order_X πŸ“–mathematicalβ€”order
X
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”Nat.cast_one
order_monomial_of_ne_zero
one_ne_zero
NeZero.one
order_X_pow πŸ“–mathematicalβ€”order
PowerSeries
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
X
ENat
ENat.instNatCast
β€”X_pow_eq
order_monomial_of_ne_zero
one_ne_zero
NeZero.one
order_add_of_order_eq πŸ“–mathematicalβ€”order
PowerSeries
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiring
ENat
SemilatticeInf.toMin
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
β€”order_add_of_order_ne
order_add_of_order_ne πŸ“–mathematicalβ€”order
PowerSeries
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiring
ENat
SemilatticeInf.toMin
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
β€”le_antisymm
Ne.lt_or_gt
add_comm
inf_comm
min_order_le_order_add
order_eq πŸ“–mathematicalβ€”order
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”instIsEmptyFalse
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
order_eq_emultiplicity_X πŸ“–mathematicalβ€”order
emultiplicity
PowerSeries
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
X
β€”eq_or_ne
order_zero
emultiplicity_zero
le_antisymm
Order.le_of_lt_add_one
not_le
Nat.cast_one
Nat.cast_add
pow_dvd_iff_le_emultiplicity
coeff_order
coeff_mul_of_lt_order
X_pow_eq
order_monomial
ENat.coe_lt_coe
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
Nat.instZeroLEOneClass
X_pow_mul
le_emultiplicity_of_pow_dvd
X_pow_order_dvd
order_eq_nat πŸ“–mathematicalβ€”order
ENat
ENat.instNatCast
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”eq_or_ne
order_zero
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
order_eq_order πŸ“–mathematicalβ€”order
MvPowerSeries.order
β€”eq_of_le_of_ge
MvPowerSeries.le_order
coeff_of_lt_order
Finset.sum_eq_single
instIsEmptyFalse
coeff_def
le_order
MvPowerSeries.coeff_of_lt_order
Finsupp.degree_single
order_eq_top πŸ“–mathematicalβ€”order
Top.top
ENat
instTopENat
PowerSeries
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”Iff.not_left
order_finite_iff_ne_zero
order_finite_iff_ne_zero πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
order
Top.top
instTopENat
β€”β€”
order_le πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
order
ENat.instNatCast
β€”order.eq_1
exists_coeff_ne_zero_iff_ne_zero
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
le_rfl
order_monomial πŸ“–mathematicalβ€”order
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
Semiring.toModule
instModule
LinearMap.instFunLike
monomial
ENat
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
Top.top
instTopENat
ENat.instNatCast
β€”order_eq_top
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
order_eq
coeff_monomial_same
coeff_monomial
ne_of_lt
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
order_monomial_of_ne_zero πŸ“–mathematicalβ€”order
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
Semiring.toModule
instModule
LinearMap.instFunLike
monomial
ENat
ENat.instNatCast
β€”order_monomial
order_mul πŸ“–mathematicalβ€”order
PowerSeries
MvPowerSeries.instMul
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”le_antisymm
MulZeroClass.zero_mul
order_zero
top_add
MulZeroClass.mul_zero
add_top
coe_toNat_order
ENat.coe_add
order_le
coeff_mul
Finset.sum_eq_single_of_mem
trichotomy_of_add_eq_add
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Finset.HasAntidiagonal.mem_antidiagonal
coeff_of_lt_order_toNat
mul_ne_zero
coeff_order
le_order_mul
order_mul_ge πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
order
PowerSeries
MvPowerSeries.instMul
β€”le_order_mul
order_ne_zero_iff_constCoeff_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
RingHom
PowerSeries
Semiring.toNonAssocSemiring
instSemiring
RingHom.instFunLike
constantCoeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”ENat.one_le_iff_ne_zero
one_le_order_iff_constCoeff_eq_zero
order_neg πŸ“–mathematicalβ€”order
Ring.toSemiring
PowerSeries
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroup
Ring.toAddCommGroup
β€”neg_add_cancel
order_zero
order_add_of_order_ne
neg_zero
order_one πŸ“–mathematicalβ€”order
PowerSeries
MvPowerSeries.instOne
ENat
instZeroENat
β€”monomial_zero_eq_C
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
CharP.cast_eq_zero
CharP.ofCharZero
order_monomial_of_ne_zero
one_ne_zero
NeZero.one
order_pow πŸ“–mathematicalβ€”order
PowerSeries
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
ENat
AddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”map_pow
MonoidHom.instMonoidHomClass
order_prod πŸ“–mathematicalβ€”order
CommSemiring.toSemiring
Finset.prod
PowerSeries
CommSemiring.toCommMonoid
instCommSemiring
Finset.sum
ENat
LinearOrderedAddCommMonoidWithTop.toAddCommMonoid
instLinearOrderedAddCommMonoidWithTopENat
β€”map_prod
MonoidHom.instMonoidHomClass
order_toSubring πŸ“–mathematicalSubring
SetLike.instMembership
Subring.instSetLike
DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
order
Subring.toRing
toSubring
β€”eq_of_le_of_ge
le_order
coeff_toSubring
coeff_of_lt_order
Nat.cast_zero
order_zero πŸ“–mathematicalβ€”order
PowerSeries
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Top.top
ENat
instTopENat
β€”β€”
order_zero_of_unit πŸ“–mathematicalIsUnit
PowerSeries
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
order
ENat
instZeroENat
β€”add_eq_zero
Unique.instSubsingleton
nonpos_iff_eq_zero
order_one
order_mul_ge

---

← Back to Index