π Source: Mathlib/RingTheory/PowerSeries/PiTopology.lean
instTopologicalSpace
instUniformSpace
continuous_C
continuous_coeff
continuous_constantCoeff
denseRange_toPowerSeries
hasSum_iff_hasSum_coeff
instCompleteSpace
instIsTopologicalRing
instIsTopologicalSemiring
instIsUniformAddGroup
instT0Space
instT2Space
isTopologicallyNilpotent_iff_constantCoeff_isNilpotent
isTopologicallyNilpotent_of_constantCoeff_isNilpotent
isTopologicallyNilpotent_of_constantCoeff_zero
multipliable_one_add_of_tendsto_order_atTop_nhds_top
multipliable_one_sub_X_pow
one_sub_mul_tsum_pow_of_constantCoeff_eq_zero
summable_iff_summable_coeff
summable_of_tendsto_order_atTop_nhds_top
summable_pow_of_constantCoeff_eq_zero
summable_prod_of_tendsto_order_atTop_nhds_top
tendsto_iff_coeff_tendsto
tendsto_trunc_atTop
tprod_one_sub_X_pow_ne_zero
tsum_pow_mul_one_sub_of_constantCoeff_eq_zero
uniformContinuous_coeff
as_tsum
hasSum_of_monomials_self
tsum
PowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
WithPiTopology.instTopologicalSpace
DFunLike.coe
LinearMap
RingHom.id
Semiring.toModule
instModule
LinearMap.instFunLike
monomial
coeff
SummationFilter.unconditional
HasSum.tsum_eq
WithPiTopology.instT2Space
SummationFilter.instNeBotUnconditional
HasSum
RingHomInvPair.ids
Equiv.hasSum_iff
Finsupp.unique_ext
Finsupp.single_eq_same
MvPowerSeries.WithPiTopology.hasSum_of_monomials_self
PowerSeries.hasSum_of_monomials_self
Nat.Partition.hasProd_powerSeriesMk_card_countRestricted
Nat.Partition.summable_genFun_term
Nat.Partition.powerSeriesMk_card_restricted_eq_tprod
Nat.Partition.hasProd_powerSeriesMk_card_restricted
PowerSeries.as_tsum
Nat.Partition.powerSeriesMk_card_countRestricted_eq_tprod
Nat.Partition.summable_genFun_term'
Nat.Partition.multipliable_powerSeriesMk_card_restricted
PowerSeries.continuous_aeval
PowerSeries.continuous_evalβ
Nat.Partition.hasProd_genFun
Nat.Partition.multipliable_powerSeriesMk_card_countRestricted
PowerSeries.HasEval.X
Nat.Partition.multipliable_genFun
Nat.Partition.genFun_eq_tprod
PowerSeries.uniformContinuous_evalβ
Continuous
RingHom
PowerSeries.instSemiring
RingHom.instFunLike
PowerSeries.C
MvPowerSeries.WithPiTopology.continuous_C
PowerSeries.instAddCommMonoid
PowerSeries.instModule
PowerSeries.coeff
continuous_pi_iff
continuous_id
PowerSeries.constantCoeff
PowerSeries.coeff_zero_eq_constantCoeff
DenseRange
Polynomial
CommSemiring.toSemiring
Polynomial.toPowerSeries
mem_closure_of_tendsto
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.Eventually.of_forall
Set.mem_range_self
Finset.sum_congr
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
CompleteSpace
MvPowerSeries.WithPiTopology.instCompleteSpace
IsTopologicalRing
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
PowerSeries.instRing
MvPowerSeries.WithPiTopology.instIsTopologicalRing
IsTopologicalSemiring
MvPowerSeries.WithPiTopology.instIsTopologicalSemiring
IsUniformAddGroup
PowerSeries.instAddGroup
MvPowerSeries.WithPiTopology.instIsUniformAddGroup
T0Space
MvPowerSeries.WithPiTopology.instT0Space
T2Space
MvPowerSeries.WithPiTopology.instT2Space
Filter.Tendsto
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommRing.toCommSemiring
Filter.atTop
Nat.instPreorder
nhds
PowerSeries.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsNilpotent
MvPowerSeries.WithPiTopology.isTopologicallyNilpotent_iff_constantCoeff_isNilpotent
MvPowerSeries.WithPiTopology.isTopologicallyNilpotent_of_constantCoeff_isNilpotent
MvPowerSeries.WithPiTopology.isTopologicallyNilpotent_of_constantCoeff_zero
ENat
PowerSeries.order
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ENat.instTopologicalSpace
Top.top
instTopENat
Multipliable
CommSemiring.toCommMonoid
PowerSeries.instCommSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
MvPowerSeries.instOne
multipliable_one_add_of_summable_prod
CommRing.toCommMonoid
PowerSeries.instCommRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
PowerSeries.X
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
PowerSeries.instSubsingleton
sub_eq_add_neg
ENat.tendsto_nhds_top_iff_natCast_lt
Filter.eventually_atTop
PowerSeries.order_neg
PowerSeries.order_X_pow
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Ring.toSemiring
MvPowerSeries.instMul
Summable.one_sub_mul_tsum_pow
Summable
isEmpty_or_nonempty
summable_empty
SemilatticeSup.instIsDirectedOrder
summable_of_finite_support
SummationFilter.instHasSupportOfLeAtTop
SummationFilter.instLeAtTopUnconditional
Set.Finite.subset
Set.finite_Iic
Mathlib.Tactic.Contrapose.contraposeβ
PowerSeries.coeff_of_lt_order
LT.lt.le
MvPowerSeries.WithPiTopology.summable_pow_of_constantCoeff_eq_zero
Finset
Finset.prod
Summable.of_finite
Finite.of_fintype
Finset.finite_toSet
Set.not_subset
LT.lt.trans_le
not_lt
Set.mem_Iio
le_trans
Finset.single_le_sum
PowerSeries.le_order_prod
Finset.coe_powerset
Finset.coe_Iio
MvPowerSeries.WithPiTopology.tendsto_iff_coeff_tendsto
Equiv.forall_congr
Polynomial.semiring
Polynomial.module
PowerSeries.trunc
tendsto_atTop_of_eventually_const
Polynomial.coeff_coe
PowerSeries.coeff_trunc
Multipliable.map_tprod
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_sub
RingHomClass.toAddMonoidHomClass
map_pow
PowerSeries.constantCoeff_X
zero_pow
sub_zero
tprod_one
NeZero.one
PowerSeries.ext_iff
Summable.tsum_pow_mul_one_sub
UniformContinuous
uniformContinuous_pi
uniformContinuous_id
---
β Back to Index