Documentation Verification Report

PiTopology

πŸ“ Source: Mathlib/RingTheory/PowerSeries/PiTopology.lean

Statistics

MetricCount
DefinitionsinstTopologicalSpace, instUniformSpace
2
Theoremscontinuous_C, continuous_coeff, continuous_constantCoeff, denseRange_toPowerSeries, hasSum_iff_hasSum_coeff, instCompleteSpace, instIsTopologicalRing, instIsTopologicalSemiring, instIsUniformAddGroup, instT0Space, instT2Space, isTopologicallyNilpotent_iff_constantCoeff_isNilpotent, isTopologicallyNilpotent_of_constantCoeff_isNilpotent, isTopologicallyNilpotent_of_constantCoeff_zero, multipliable_one_add_of_tendsto_order_atTop_nhds_top, multipliable_one_sub_X_pow, one_sub_mul_tsum_pow_of_constantCoeff_eq_zero, summable_iff_summable_coeff, summable_of_tendsto_order_atTop_nhds_top, summable_pow_of_constantCoeff_eq_zero, summable_prod_of_tendsto_order_atTop_nhds_top, tendsto_iff_coeff_tendsto, tendsto_trunc_atTop, tprod_one_sub_X_pow_ne_zero, tsum_pow_mul_one_sub_of_constantCoeff_eq_zero, uniformContinuous_coeff, as_tsum, hasSum_of_monomials_self
28
Total30

PowerSeries

Theorems

NameKindAssumesProvesValidatesDepends On
as_tsum πŸ“–mathematicalβ€”tsum
PowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
WithPiTopology.instTopologicalSpace
DFunLike.coe
LinearMap
RingHom.id
Semiring.toModule
instModule
LinearMap.instFunLike
monomial
coeff
SummationFilter.unconditional
β€”HasSum.tsum_eq
WithPiTopology.instT2Space
SummationFilter.instNeBotUnconditional
hasSum_of_monomials_self
hasSum_of_monomials_self πŸ“–mathematicalβ€”HasSum
PowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
WithPiTopology.instTopologicalSpace
DFunLike.coe
LinearMap
RingHom.id
Semiring.toModule
instModule
LinearMap.instFunLike
monomial
coeff
SummationFilter.unconditional
β€”RingHomInvPair.ids
Equiv.hasSum_iff
Finsupp.unique_ext
Finsupp.single_eq_same
MvPowerSeries.WithPiTopology.hasSum_of_monomials_self

PowerSeries.WithPiTopology

Definitions

NameCategoryTheorems
instTopologicalSpace πŸ“–CompOp
38 mathmath: hasSum_iff_hasSum_coeff, continuous_coeff, continuous_constantCoeff, tendsto_iff_coeff_tendsto, instT2Space, PowerSeries.hasSum_of_monomials_self, Nat.Partition.hasProd_powerSeriesMk_card_countRestricted, summable_prod_of_tendsto_order_atTop_nhds_top, Nat.Partition.summable_genFun_term, instIsTopologicalSemiring, Nat.Partition.powerSeriesMk_card_restricted_eq_tprod, denseRange_toPowerSeries, isTopologicallyNilpotent_iff_constantCoeff_isNilpotent, one_sub_mul_tsum_pow_of_constantCoeff_eq_zero, Nat.Partition.hasProd_powerSeriesMk_card_restricted, continuous_C, PowerSeries.as_tsum, Nat.Partition.powerSeriesMk_card_countRestricted_eq_tprod, tsum_pow_mul_one_sub_of_constantCoeff_eq_zero, instIsTopologicalRing, Nat.Partition.summable_genFun_term', Nat.Partition.multipliable_powerSeriesMk_card_restricted, PowerSeries.continuous_aeval, PowerSeries.continuous_evalβ‚‚, isTopologicallyNilpotent_of_constantCoeff_isNilpotent, Nat.Partition.hasProd_genFun, multipliable_one_add_of_tendsto_order_atTop_nhds_top, tendsto_trunc_atTop, instT0Space, Nat.Partition.multipliable_powerSeriesMk_card_countRestricted, multipliable_one_sub_X_pow, summable_of_tendsto_order_atTop_nhds_top, isTopologicallyNilpotent_of_constantCoeff_zero, PowerSeries.HasEval.X, Nat.Partition.multipliable_genFun, summable_pow_of_constantCoeff_eq_zero, Nat.Partition.genFun_eq_tprod, summable_iff_summable_coeff
instUniformSpace πŸ“–CompOp
4 mathmath: uniformContinuous_coeff, instIsUniformAddGroup, PowerSeries.uniformContinuous_evalβ‚‚, instCompleteSpace

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_C πŸ“–mathematicalβ€”Continuous
PowerSeries
instTopologicalSpace
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
RingHom.instFunLike
PowerSeries.C
β€”MvPowerSeries.WithPiTopology.continuous_C
continuous_coeff πŸ“–mathematicalβ€”Continuous
PowerSeries
instTopologicalSpace
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
PowerSeries.instModule
Semiring.toModule
LinearMap.instFunLike
PowerSeries.coeff
β€”continuous_pi_iff
continuous_id
continuous_constantCoeff πŸ“–mathematicalβ€”Continuous
PowerSeries
instTopologicalSpace
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
RingHom.instFunLike
PowerSeries.constantCoeff
β€”continuous_coeff
PowerSeries.coeff_zero_eq_constantCoeff
denseRange_toPowerSeries πŸ“–mathematicalβ€”DenseRange
PowerSeries
instTopologicalSpace
Polynomial
CommSemiring.toSemiring
Polynomial.toPowerSeries
β€”mem_closure_of_tendsto
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
tendsto_trunc_atTop
Filter.Eventually.of_forall
Set.mem_range_self
hasSum_iff_hasSum_coeff πŸ“–mathematicalβ€”HasSum
PowerSeries
PowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instTopologicalSpace
SummationFilter.unconditional
DFunLike.coe
LinearMap
RingHom.id
PowerSeries.instModule
Semiring.toModule
LinearMap.instFunLike
PowerSeries.coeff
β€”Finset.sum_congr
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
tendsto_iff_coeff_tendsto
instCompleteSpace πŸ“–mathematicalβ€”CompleteSpace
PowerSeries
instUniformSpace
β€”MvPowerSeries.WithPiTopology.instCompleteSpace
instIsTopologicalRing πŸ“–mathematicalβ€”IsTopologicalRing
PowerSeries
instTopologicalSpace
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
PowerSeries.instRing
β€”MvPowerSeries.WithPiTopology.instIsTopologicalRing
instIsTopologicalSemiring πŸ“–mathematicalβ€”IsTopologicalSemiring
PowerSeries
instTopologicalSpace
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
β€”MvPowerSeries.WithPiTopology.instIsTopologicalSemiring
instIsUniformAddGroup πŸ“–mathematicalβ€”IsUniformAddGroup
PowerSeries
instUniformSpace
PowerSeries.instAddGroup
β€”MvPowerSeries.WithPiTopology.instIsUniformAddGroup
instT0Space πŸ“–mathematicalβ€”T0Space
PowerSeries
instTopologicalSpace
β€”MvPowerSeries.WithPiTopology.instT0Space
instT2Space πŸ“–mathematicalβ€”T2Space
PowerSeries
instTopologicalSpace
β€”MvPowerSeries.WithPiTopology.instT2Space
isTopologicallyNilpotent_iff_constantCoeff_isNilpotent πŸ“–mathematicalβ€”Filter.Tendsto
PowerSeries
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
PowerSeries.instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Filter.atTop
Nat.instPreorder
nhds
instTopologicalSpace
PowerSeries.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsNilpotent
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
PowerSeries.constantCoeff
β€”MvPowerSeries.WithPiTopology.isTopologicallyNilpotent_iff_constantCoeff_isNilpotent
isTopologicallyNilpotent_of_constantCoeff_isNilpotent πŸ“–mathematicalIsNilpotent
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DFunLike.coe
RingHom
PowerSeries
PowerSeries.instSemiring
RingHom.instFunLike
PowerSeries.constantCoeff
Filter.Tendsto
Filter.atTop
Nat.instPreorder
nhds
instTopologicalSpace
PowerSeries.instZero
β€”MvPowerSeries.WithPiTopology.isTopologicallyNilpotent_of_constantCoeff_isNilpotent
isTopologicallyNilpotent_of_constantCoeff_zero πŸ“–mathematicalDFunLike.coe
RingHom
PowerSeries
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
CommSemiring.toSemiring
RingHom.instFunLike
PowerSeries.constantCoeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Filter.Tendsto
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Filter.atTop
Nat.instPreorder
nhds
instTopologicalSpace
PowerSeries.instZero
β€”MvPowerSeries.WithPiTopology.isTopologicallyNilpotent_of_constantCoeff_zero
multipliable_one_add_of_tendsto_order_atTop_nhds_top πŸ“–mathematicalFilter.Tendsto
ENat
PowerSeries.order
CommSemiring.toSemiring
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
ENat.instTopologicalSpace
Top.top
instTopENat
Multipliable
PowerSeries
CommSemiring.toCommMonoid
PowerSeries.instCommSemiring
instTopologicalSpace
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
MvPowerSeries.instOne
SummationFilter.unconditional
β€”multipliable_one_add_of_summable_prod
summable_prod_of_tendsto_order_atTop_nhds_top
multipliable_one_sub_X_pow πŸ“–mathematicalβ€”Multipliable
PowerSeries
CommRing.toCommMonoid
PowerSeries.instCommRing
instTopologicalSpace
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
PowerSeries.instAddGroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
MvPowerSeries.instOne
CommSemiring.toSemiring
CommRing.toCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
PowerSeries.instSemiring
PowerSeries.X
SummationFilter.unconditional
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
PowerSeries.instSubsingleton
sub_eq_add_neg
multipliable_one_add_of_tendsto_order_atTop_nhds_top
ENat.tendsto_nhds_top_iff_natCast_lt
Filter.eventually_atTop
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
PowerSeries.order_neg
PowerSeries.order_X_pow
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
one_sub_mul_tsum_pow_of_constantCoeff_eq_zero πŸ“–mathematicalDFunLike.coe
RingHom
PowerSeries
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
Ring.toSemiring
RingHom.instFunLike
PowerSeries.constantCoeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
MvPowerSeries.instMul
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
PowerSeries.instAddGroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
MvPowerSeries.instOne
tsum
PowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instTopologicalSpace
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
SummationFilter.unconditional
β€”Summable.one_sub_mul_tsum_pow
instIsTopologicalRing
instT2Space
summable_pow_of_constantCoeff_eq_zero
summable_iff_summable_coeff πŸ“–mathematicalβ€”Summable
PowerSeries
PowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instTopologicalSpace
SummationFilter.unconditional
DFunLike.coe
LinearMap
RingHom.id
PowerSeries.instModule
Semiring.toModule
LinearMap.instFunLike
PowerSeries.coeff
β€”β€”
summable_of_tendsto_order_atTop_nhds_top πŸ“–mathematicalFilter.Tendsto
ENat
PowerSeries.order
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
ENat.instTopologicalSpace
Top.top
instTopENat
Summable
PowerSeries
PowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instTopologicalSpace
SummationFilter.unconditional
β€”isEmpty_or_nonempty
summable_empty
summable_iff_summable_coeff
SemilatticeSup.instIsDirectedOrder
summable_of_finite_support
SummationFilter.instHasSupportOfLeAtTop
SummationFilter.instLeAtTopUnconditional
Set.Finite.subset
Set.finite_Iic
Mathlib.Tactic.Contrapose.contraposeβ‚‚
PowerSeries.coeff_of_lt_order
LT.lt.le
summable_pow_of_constantCoeff_eq_zero πŸ“–mathematicalDFunLike.coe
RingHom
PowerSeries
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
RingHom.instFunLike
PowerSeries.constantCoeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Summable
PowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instTopologicalSpace
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
SummationFilter.unconditional
β€”MvPowerSeries.WithPiTopology.summable_pow_of_constantCoeff_eq_zero
summable_prod_of_tendsto_order_atTop_nhds_top πŸ“–mathematicalFilter.Tendsto
ENat
PowerSeries.order
CommSemiring.toSemiring
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
ENat.instTopologicalSpace
Top.top
instTopENat
Summable
PowerSeries
Finset
PowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instTopologicalSpace
Finset.prod
CommSemiring.toCommMonoid
PowerSeries.instCommSemiring
SummationFilter.unconditional
β€”isEmpty_or_nonempty
Summable.of_finite
Finite.of_fintype
SummationFilter.instHasSupportOfLeAtTop
SummationFilter.instLeAtTopUnconditional
summable_iff_summable_coeff
summable_of_finite_support
SemilatticeSup.instIsDirectedOrder
Set.Finite.subset
Finset.finite_toSet
Mathlib.Tactic.Contrapose.contraposeβ‚‚
Set.not_subset
PowerSeries.coeff_of_lt_order
LT.lt.trans_le
not_lt
Set.mem_Iio
le_trans
Finset.single_le_sum
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
PowerSeries.le_order_prod
Finset.coe_powerset
Finset.coe_Iio
tendsto_iff_coeff_tendsto πŸ“–mathematicalβ€”Filter.Tendsto
PowerSeries
nhds
instTopologicalSpace
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
PowerSeries.instModule
Semiring.toModule
LinearMap.instFunLike
PowerSeries.coeff
β€”MvPowerSeries.WithPiTopology.tendsto_iff_coeff_tendsto
Equiv.forall_congr
RingHomInvPair.ids
Finsupp.unique_ext
Finsupp.single_eq_same
tendsto_trunc_atTop πŸ“–mathematicalβ€”Filter.Tendsto
PowerSeries
Polynomial.toPowerSeries
CommSemiring.toSemiring
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
PowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Polynomial.semiring
PowerSeries.instModule
Semiring.toModule
Polynomial.module
LinearMap.instFunLike
PowerSeries.trunc
Filter.atTop
Nat.instPreorder
nhds
instTopologicalSpace
β€”tendsto_iff_coeff_tendsto
tendsto_atTop_of_eventually_const
Polynomial.coeff_coe
PowerSeries.coeff_trunc
tprod_one_sub_X_pow_ne_zero πŸ“–β€”β€”β€”β€”PowerSeries.coeff_zero_eq_constantCoeff
Multipliable.map_tprod
SummationFilter.instNeBotUnconditional
multipliable_one_sub_X_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
continuous_constantCoeff
map_sub
RingHomClass.toAddMonoidHomClass
map_pow
PowerSeries.constantCoeff_X
zero_pow
sub_zero
tprod_one
NeZero.one
PowerSeries.ext_iff
tsum_pow_mul_one_sub_of_constantCoeff_eq_zero πŸ“–mathematicalDFunLike.coe
RingHom
PowerSeries
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
Ring.toSemiring
RingHom.instFunLike
PowerSeries.constantCoeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
MvPowerSeries.instMul
tsum
PowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instTopologicalSpace
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
SummationFilter.unconditional
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
PowerSeries.instAddGroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
MvPowerSeries.instOne
β€”Summable.tsum_pow_mul_one_sub
instIsTopologicalRing
instT2Space
summable_pow_of_constantCoeff_eq_zero
uniformContinuous_coeff πŸ“–mathematicalβ€”UniformContinuous
PowerSeries
instUniformSpace
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
PowerSeries.instModule
Semiring.toModule
LinearMap.instFunLike
PowerSeries.coeff
β€”uniformContinuous_pi
uniformContinuous_id

---

← Back to Index