Documentation Verification Report

Restricted

πŸ“ Source: Mathlib/RingTheory/PowerSeries/Restricted.lean

Statistics

MetricCount
DefinitionsIsRestricted, convergenceSet
2
TheoremsC, add, convergenceSet_BddAbove, isRestricted_iff, isRestricted_iff_abs, monomial, mul, neg, one, smul, zero
11
Total13

PowerSeries

Definitions

NameCategoryTheorems
IsRestricted πŸ“–MathDef
6 mathmath: IsRestricted.isRestricted_iff, IsRestricted.one, IsRestricted.monomial, IsRestricted.C, IsRestricted.zero, IsRestricted.isRestricted_iff_abs

PowerSeries.IsRestricted

Definitions

NameCategoryTheorems
convergenceSet πŸ“–CompOp
1 mathmath: convergenceSet_BddAbove

Theorems

NameKindAssumesProvesValidatesDepends On
C πŸ“–mathematicalβ€”PowerSeries.IsRestricted
DFunLike.coe
RingHom
PowerSeries
Semiring.toNonAssocSemiring
Ring.toSemiring
NormedRing.toRing
PowerSeries.instSemiring
RingHom.instFunLike
PowerSeries.C
β€”PowerSeries.monomial_zero_eq_C_apply
monomial
add πŸ“–mathematicalPowerSeries.IsRestrictedPowerSeries
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
PowerSeries.instRing
NormedRing.toRing
β€”map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
norm_mul
NormedDivisionRing.toNormMulClass
norm_pow
NormedDivisionRing.to_normOneClass
Nat.instAtLeastTwoHAddOfNat
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
abs_norm
le_imp_le_of_le_of_le
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
norm_add_le
pow_nonneg
IsOrderedRing.toZeroLEOneClass
IsOrderedRing.toPosMulMono
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
le_refl
add_mul
Distrib.rightDistribClass
add_lt_add_of_lt_of_lt
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.add_pf_zero_add
convergenceSet_BddAbove πŸ“–mathematicalPowerSeries.IsRestrictedBddAbove
Real
Real.instLE
convergenceSet
β€”Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
norm_mul
NormedDivisionRing.toNormMulClass
norm_norm
norm_pow
NormedDivisionRing.to_normOneClass
bddAbove_def
convergenceSet.eq_1
le_total
Finset.le_max'
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
le_abs_self
norm_nonneg
abs_pow
LT.lt.le
isRestricted_iff πŸ“–mathematicalβ€”PowerSeries.IsRestricted
Real
Real.instLT
Norm.norm
Real.norm
Real.instMul
NormedRing.toNorm
DFunLike.coe
LinearMap
Ring.toSemiring
NormedRing.toRing
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries
PowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
PowerSeries.instModule
Semiring.toModule
LinearMap.instFunLike
PowerSeries.coeff
Monoid.toNatPow
Real.instMonoid
β€”instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
sub_zero
norm_mul
NormedDivisionRing.toNormMulClass
norm_norm
norm_pow
NormedDivisionRing.to_normOneClass
isRestricted_iff_abs πŸ“–mathematicalβ€”PowerSeries.IsRestricted
abs
Real
Real.lattice
Real.instAddGroup
β€”norm_mul
NormedDivisionRing.toNormMulClass
norm_norm
norm_pow
NormedDivisionRing.to_normOneClass
abs_abs
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
monomial πŸ“–mathematicalβ€”PowerSeries.IsRestricted
DFunLike.coe
LinearMap
Ring.toSemiring
NormedRing.toRing
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
PowerSeries.instAddCommMonoid
Semiring.toModule
PowerSeries.instModule
LinearMap.instFunLike
PowerSeries.monomial
β€”norm_mul
NormedDivisionRing.toNormMulClass
abs_norm
norm_pow
NormedDivisionRing.to_normOneClass
norm_zero
MulZeroClass.zero_mul
mul πŸ“–mathematicalPowerSeries.IsRestrictedPowerSeries
MvPowerSeries.instMul
Ring.toSemiring
NormedRing.toRing
β€”bddAbove_iff_exists_ge
convergenceSet_BddAbove
isRestricted_iff_abs
PowerSeries.coeff_mul
norm_mul
NormedDivisionRing.toNormMulClass
abs_norm
norm_pow
NormedDivisionRing.to_normOneClass
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
lt_max_of_lt_left
lt_of_lt_of_le
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
IsUltrametricDist.exists_norm_finset_sum_le
zero_add
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
pow_nonneg
Real.instZeroLEOneClass
IsOrderedRing.toPosMulMono
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
le_imp_le_of_le_of_le
norm_mul_le
IsOrderedRing.toZeroLEOneClass
le_refl
pow_add
lt_imp_lt_of_le_of_le
mul_le_mul_of_nonneg_left
mul_nonneg
norm_nonneg
mul_lt_mul_of_pos_right
IsStrictOrderedRing.toMulPosStrictMono
div_mul_comm
mul_le_iff_le_one_left
MulPosStrictMono.toMulPosReflectLE
div_le_one_of_leβ‚€
MulPosReflectLE.toMulPosReflectLT
le_max_right
Mathlib.Tactic.Bound.le_max_of_le_left_or_le_right
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
neg_neg_of_pos
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Tactic.Linarith.sub_neg_of_lt
mul_lt_mul_of_pos_left
mul_div_left_comm
mul_le_iff_le_one_right
le_max_left
neg πŸ“–mathematicalPowerSeries.IsRestrictedPowerSeries
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
PowerSeries.instAddCommGroup
NormedAddCommGroup.toAddCommGroup
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
β€”map_neg
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
norm_neg
norm_mul
NormedDivisionRing.toNormMulClass
norm_norm
norm_pow
NormedDivisionRing.to_normOneClass
one πŸ“–mathematicalβ€”PowerSeries.IsRestricted
PowerSeries
MvPowerSeries.instOne
Ring.toSemiring
NormedRing.toRing
β€”PowerSeries.coeff_one
norm_mul
NormedDivisionRing.toNormMulClass
norm_pow
NormedDivisionRing.to_normOneClass
norm_zero
abs_zero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
MulZeroClass.zero_mul
smul πŸ“–mathematicalPowerSeries.IsRestrictedPowerSeries
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
PowerSeries.instAddMonoid
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
Module.toDistribMulAction
PowerSeries.instAddCommMonoid
ESeminormedAddCommMonoid.toAddCommMonoid
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
PowerSeries.instModule
Semiring.toModule
β€”zero_smul
zero
norm_mul
NormedDivisionRing.toNormMulClass
norm_pow
NormedDivisionRing.to_normOneClass
abs_norm
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
norm_pos_iff
mul_le_mul_of_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
norm_mul_le
Real.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
mul_assoc
mul_div_cancelβ‚€
zero πŸ“–mathematicalβ€”PowerSeries.IsRestricted
PowerSeries
PowerSeries.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
β€”map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
norm_zero
MulZeroClass.zero_mul
T5Space.toT1Space
OrderTopology.t5Space
instOrderTopologyReal
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat

---

← Back to Index