Documentation Verification Report

WeierstrassPreparation

πŸ“ Source: Mathlib/RingTheory/PowerSeries/WeierstrassPreparation.lean

Statistics

MetricCount
DefinitionsalgEquivQuotient, IsWeierstrassDivision, IsWeierstrassDivisionAt, IsWeierstrassDivisor, IsWeierstrassDivisorAt, div, divCoeff, mod', seq, IsWeierstrassFactorization, IsWeierstrassFactorizationAt, algEquivQuotient, algEquivQuotientWeierstrassDistinguished, weierstrassDistinguished, weierstrassDiv, weierstrassMod, weierstrassUnit, Β«term_%Κ·_Β», Β«term_/Κ·_Β»
19
TheoremsalgEquivQuotient_apply, algEquivQuotient_symm_apply, isWeierstrassDivisorAt, isWeierstrassDivisorAt', elim, eq_zero, isUnit_of_map_ne_zero, isWeierstrassFactorization, unique, add, coeff_f_sub_r_mem, degree_lt, eq_mul_add, smul, of_map_ne_zero, coeff_div, coeff_div_sub_seq_mem, coeff_seq_mem, coeff_seq_succ_sub_seq_mem, div_add, div_coe_eq_zero, div_smul, div_zero, eq_of_mul_add_eq_mul_add, eq_zero_of_mul_eq, isUnit_shift, isWeierstrassDivisionAt_div_mod, mk_mod'_eq_self, mod'_mk_eq_mod, mod_add, mod_coe_eq_self, mod_smul, mod_zero, seq_one, seq_zero, degree_eq_coe_lift_order_map, elim, isWeierstrassDivision, map_ne_zero, natDegree_eq_toNat_order_map, unique, algEquivQuotient_apply, algEquivQuotient_symm_apply, degree_eq_coe_lift_order_map_of_ne_top, eq_mul, isDistinguishedAt, isUnit, map_ne_zero_of_ne_top, mul, natDegree_eq_toNat_order_map_of_ne_top, smul, add_weierstrassDiv, add_weierstrassMod, degree_weierstrassMod_lt, eq_mul_weierstrassDiv_add_weierstrassMod, eq_weierstrassDistinguished_mul_weierstrassUnit, exists_isWeierstrassDivision, exists_isWeierstrassFactorization, isDistinguishedAt_weierstrassDistinguished, isUnit_weierstrassUnit, isWeierstrassDivisionAt_iff, isWeierstrassDivisionAt_zero, isWeierstrassDivision_weierstrassDiv_weierstrassMod, isWeierstrassFactorizationAt_iff, isWeierstrassFactorization_weierstrassDistinguished_weierstrassUnit, smul_weierstrassDiv, smul_weierstrassMod, weierstrassDistinguished_mul, weierstrassDistinguished_smul, weierstrassDiv_zero, weierstrassDiv_zero_left, weierstrassDiv_zero_right, weierstrassMod_zero, weierstrassMod_zero_left, weierstrassMod_zero_right, weierstrassUnit_mul, weierstrassUnit_smul, zero_weierstrassDiv, zero_weierstrassMod
79
Total98

Polynomial.IsDistinguishedAt

Definitions

NameCategoryTheorems
algEquivQuotient πŸ“–CompOp
2 mathmath: algEquivQuotient_symm_apply, algEquivQuotient_apply

Theorems

NameKindAssumesProvesValidatesDepends On
algEquivQuotient_apply πŸ“–mathematicalPolynomial.IsDistinguishedAtDFunLike.coe
AlgEquiv
HasQuotient.Quotient
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal
Polynomial.semiring
Ideal.instHasQuotient_1
Polynomial.commRing
Ideal.span
Set
Set.instSingletonSet
PowerSeries
PowerSeries.instSemiring
PowerSeries.instCommRing
Polynomial.toPowerSeries
Ideal.Quotient.semiring
Ideal.instAlgebraQuotient
Polynomial.algebraOfAlgebra
Algebra.id
PowerSeries.instAlgebra
AlgEquiv.instFunLike
algEquivQuotient
AlgHom
Ring.toSemiring
Polynomial.ring
CommRing.toRing
Ideal.instHasQuotient
PowerSeries.instRing
Ideal.Quotient.ring
Ideal.Quotient.algebra
AlgHom.funLike
Ideal.quotientMapₐ
Polynomial.coeToPowerSeries.algHom
β€”β€”
algEquivQuotient_symm_apply πŸ“–mathematicalPolynomial.IsDistinguishedAtDFunLike.coe
AlgEquiv
HasQuotient.Quotient
PowerSeries
Ideal
PowerSeries.instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
PowerSeries.instCommRing
Ideal.span
Set
Set.instSingletonSet
Polynomial.toPowerSeries
Polynomial
Polynomial.semiring
Polynomial.commRing
Ideal.Quotient.semiring
Ideal.instAlgebraQuotient
PowerSeries.instAlgebra
Algebra.id
Polynomial.algebraOfAlgebra
AlgEquiv.instFunLike
AlgEquiv.symm
algEquivQuotient
RingHom
Ring.toSemiring
Polynomial.ring
CommRing.toRing
Ideal.instHasQuotient
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
RingHom.instFunLike
LinearMap
RingHom.id
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal.Quotient.commRing
Submodule.Quotient.module'
PowerSeries.instRing
PowerSeries.instAddCommGroup
Ring.toAddCommGroup
Semiring.toModule
Algebra.toSMul
PowerSeries.instModule
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Polynomial.module
LinearMap.instFunLike
PowerSeries.IsWeierstrassDivisorAt.mod'
β€”β€”
isWeierstrassDivisorAt πŸ“–mathematicalPolynomial.IsDistinguishedAtPowerSeries.IsWeierstrassDivisorAt
Polynomial.toPowerSeries
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”Ideal.instIsTwoSided_1
coe_natDegree_eq_order_map
PowerSeries.constantCoeff_one
Ideal.ne_top_iff_one
mul_one
Polynomial.coeff_coe
Polynomial.Monic.leadingCoeff
monic
isWeierstrassDivisorAt' πŸ“–mathematicalPolynomial.IsDistinguishedAtPowerSeries.IsWeierstrassDivisorAt
Polynomial.toPowerSeries
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”eq_or_ne
IsHausdorff.subsingleton
isUnit_of_subsingleton
Ideal.instIsTwoSided_1
isWeierstrassDivisorAt

PowerSeries

Definitions

NameCategoryTheorems
IsWeierstrassDivision πŸ“–MathDef
3 mathmath: IsWeierstrassFactorization.isWeierstrassDivision, isWeierstrassDivision_weierstrassDiv_weierstrassMod, exists_isWeierstrassDivision
IsWeierstrassDivisionAt πŸ“–CompData
3 mathmath: isWeierstrassDivisionAt_iff, IsWeierstrassDivisorAt.isWeierstrassDivisionAt_div_mod, isWeierstrassDivisionAt_zero
IsWeierstrassDivisor πŸ“–MathDef
1 mathmath: IsWeierstrassDivisor.of_map_ne_zero
IsWeierstrassDivisorAt πŸ“–MathDef
2 mathmath: Polynomial.IsDistinguishedAt.isWeierstrassDivisorAt, Polynomial.IsDistinguishedAt.isWeierstrassDivisorAt'
IsWeierstrassFactorization πŸ“–MathDef
3 mathmath: isWeierstrassFactorization_weierstrassDistinguished_weierstrassUnit, exists_isWeierstrassFactorization, IsWeierstrassDivision.isWeierstrassFactorization
IsWeierstrassFactorizationAt πŸ“–CompData
1 mathmath: isWeierstrassFactorizationAt_iff
algEquivQuotientWeierstrassDistinguished πŸ“–CompOpβ€”
weierstrassDistinguished πŸ“–CompOp
6 mathmath: weierstrassDistinguished_mul, isWeierstrassFactorization_weierstrassDistinguished_weierstrassUnit, IsWeierstrassFactorization.unique, isDistinguishedAt_weierstrassDistinguished, eq_weierstrassDistinguished_mul_weierstrassUnit, weierstrassDistinguished_smul
weierstrassDiv πŸ“–CompOp
9 mathmath: zero_weierstrassDiv, eq_mul_weierstrassDiv_add_weierstrassMod, smul_weierstrassDiv, IsWeierstrassDivision.unique, isWeierstrassDivision_weierstrassDiv_weierstrassMod, weierstrassDiv_zero, weierstrassDiv_zero_right, weierstrassDiv_zero_left, add_weierstrassDiv
weierstrassMod πŸ“–CompOp
10 mathmath: zero_weierstrassMod, eq_mul_weierstrassDiv_add_weierstrassMod, degree_weierstrassMod_lt, IsWeierstrassDivision.unique, isWeierstrassDivision_weierstrassDiv_weierstrassMod, smul_weierstrassMod, weierstrassMod_zero_left, add_weierstrassMod, weierstrassMod_zero_right, weierstrassMod_zero
weierstrassUnit πŸ“–CompOp
6 mathmath: weierstrassUnit_mul, isWeierstrassFactorization_weierstrassDistinguished_weierstrassUnit, isUnit_weierstrassUnit, IsWeierstrassFactorization.unique, eq_weierstrassDistinguished_mul_weierstrassUnit, weierstrassUnit_smul
Β«term_%Κ·_Β» πŸ“–CompOpβ€”
Β«term_/Κ·_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
add_weierstrassDiv πŸ“–mathematicalβ€”weierstrassDiv
PowerSeries
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
IsAdicComplete.toIsPrecomplete
IsLocalRing.maximalIdeal
CommRing.toCommSemiring
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
β€”IsAdicComplete.toIsPrecomplete
IsWeierstrassDivisor.of_map_ne_zero
IsWeierstrassDivisorAt.div_add
add_zero
add_weierstrassMod πŸ“–mathematicalβ€”weierstrassMod
PowerSeries
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
IsAdicComplete.toIsPrecomplete
IsLocalRing.maximalIdeal
CommRing.toCommSemiring
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
Polynomial
Polynomial.instAdd
β€”IsAdicComplete.toIsPrecomplete
IsWeierstrassDivisor.of_map_ne_zero
IsWeierstrassDivisorAt.mod_add
add_zero
degree_weierstrassMod_lt πŸ“–mathematicalβ€”WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
CommSemiring.toSemiring
CommRing.toCommSemiring
weierstrassMod
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
ENat.toNat
order
IsLocalRing.ResidueField
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsLocalRing.ResidueField.field
DFunLike.coe
RingHom
PowerSeries
Semiring.toNonAssocSemiring
instSemiring
RingHom.instFunLike
map
IsLocalRing.residue
β€”IsWeierstrassDivisor.of_map_ne_zero
weierstrassMod.eq_1
degree_trunc_lt
Ideal.instIsTwoSided_1
Polynomial.degree_zero
WithBot.bot_lt_coe
eq_mul_weierstrassDiv_add_weierstrassMod πŸ“–mathematicalβ€”PowerSeries
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
MvPowerSeries.instMul
CommSemiring.toSemiring
CommRing.toCommSemiring
weierstrassDiv
IsAdicComplete.toIsPrecomplete
IsLocalRing.maximalIdeal
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
Polynomial.toPowerSeries
weierstrassMod
β€”IsAdicComplete.toIsPrecomplete
IsWeierstrassDivisor.of_map_ne_zero
IsWeierstrassDivisionAt.eq_mul_add
IsWeierstrassDivisorAt.isWeierstrassDivisionAt_div_mod
eq_weierstrassDistinguished_mul_weierstrassUnit πŸ“–mathematicalβ€”PowerSeries
MvPowerSeries.instMul
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.toPowerSeries
weierstrassDistinguished
weierstrassUnit
β€”IsWeierstrassFactorizationAt.eq_mul
exists_isWeierstrassFactorization
exists_isWeierstrassDivision πŸ“–mathematicalβ€”IsWeierstrassDivisionβ€”IsWeierstrassDivisor.of_map_ne_zero
IsAdicComplete.toIsPrecomplete
IsWeierstrassDivisorAt.isWeierstrassDivisionAt_div_mod
exists_isWeierstrassFactorization πŸ“–mathematicalβ€”IsWeierstrassFactorizationβ€”exists_isWeierstrassDivision
IsWeierstrassDivision.isUnit_of_map_ne_zero
IsWeierstrassDivision.isWeierstrassFactorization
isDistinguishedAt_weierstrassDistinguished πŸ“–mathematicalβ€”Polynomial.IsDistinguishedAt
weierstrassDistinguished
IsLocalRing.maximalIdeal
CommRing.toCommSemiring
β€”IsWeierstrassFactorizationAt.isDistinguishedAt
exists_isWeierstrassFactorization
isUnit_weierstrassUnit πŸ“–mathematicalβ€”IsUnit
PowerSeries
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
weierstrassUnit
β€”IsWeierstrassFactorizationAt.isUnit
exists_isWeierstrassFactorization
isWeierstrassDivisionAt_iff πŸ“–mathematicalβ€”IsWeierstrassDivisionAt
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
CommSemiring.toSemiring
CommRing.toCommSemiring
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
ENat.toNat
order
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.semiring
DFunLike.coe
RingHom
PowerSeries
Semiring.toNonAssocSemiring
instSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
map
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
MvPowerSeries.instMul
Polynomial.toPowerSeries
β€”Ideal.instIsTwoSided_1
isWeierstrassDivisionAt_zero πŸ“–mathematicalβ€”IsWeierstrassDivisionAt
PowerSeries
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.instZero
β€”Ideal.instIsTwoSided_1
Polynomial.degree_zero
WithBot.bot_lt_coe
MulZeroClass.mul_zero
add_zero
isWeierstrassDivision_weierstrassDiv_weierstrassMod πŸ“–mathematicalβ€”IsWeierstrassDivision
weierstrassDiv
IsAdicComplete.toIsPrecomplete
IsLocalRing.maximalIdeal
CommRing.toCommSemiring
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
weierstrassMod
β€”IsAdicComplete.toIsPrecomplete
IsWeierstrassDivisor.of_map_ne_zero
IsWeierstrassDivision.congr_simp
IsWeierstrassDivisorAt.isWeierstrassDivisionAt_div_mod
isWeierstrassFactorizationAt_iff πŸ“–mathematicalβ€”IsWeierstrassFactorizationAt
Polynomial.IsDistinguishedAt
IsUnit
PowerSeries
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
MvPowerSeries.instMul
Polynomial.toPowerSeries
β€”β€”
isWeierstrassFactorization_weierstrassDistinguished_weierstrassUnit πŸ“–mathematicalβ€”IsWeierstrassFactorization
weierstrassDistinguished
weierstrassUnit
β€”exists_isWeierstrassFactorization
smul_weierstrassDiv πŸ“–mathematicalβ€”weierstrassDiv
PowerSeries
Algebra.toSMul
CommRing.toCommSemiring
instSemiring
CommSemiring.toSemiring
instAlgebra
Algebra.id
IsAdicComplete.toIsPrecomplete
IsLocalRing.maximalIdeal
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
β€”IsAdicComplete.toIsPrecomplete
IsWeierstrassDivisor.of_map_ne_zero
IsWeierstrassDivisorAt.div_smul
smul_zero
smul_weierstrassMod πŸ“–mathematicalβ€”weierstrassMod
PowerSeries
Algebra.toSMul
CommRing.toCommSemiring
instSemiring
CommSemiring.toSemiring
instAlgebra
Algebra.id
IsAdicComplete.toIsPrecomplete
IsLocalRing.maximalIdeal
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
β€”IsAdicComplete.toIsPrecomplete
IsWeierstrassDivisor.of_map_ne_zero
IsWeierstrassDivisorAt.mod_smul
smul_zero
weierstrassDistinguished_mul πŸ“–mathematicalβ€”weierstrassDistinguished
PowerSeries
MvPowerSeries.instMul
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
Polynomial.instMul
β€”map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
MulZeroClass.zero_mul
isWeierstrassFactorization_weierstrassDistinguished_weierstrassUnit
MulZeroClass.mul_zero
IsWeierstrassFactorization.elim
IsAdicComplete.toIsHausdorff
IsWeierstrassFactorizationAt.mul
weierstrassDistinguished_smul πŸ“–mathematicalβ€”weierstrassDistinguished
PowerSeries
Algebra.toSMul
CommRing.toCommSemiring
instSemiring
CommSemiring.toSemiring
instAlgebra
Algebra.id
β€”Algebra.smul_def
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
map_C
MulZeroClass.mul_zero
isWeierstrassFactorization_weierstrassDistinguished_weierstrassUnit
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
MulZeroClass.zero_mul
IsWeierstrassFactorization.elim
IsAdicComplete.toIsHausdorff
IsWeierstrassFactorizationAt.smul
weierstrassDiv_zero πŸ“–mathematicalβ€”weierstrassDiv
PowerSeries
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”weierstrassDiv_zero_right
weierstrassDiv_zero_left πŸ“–mathematicalβ€”weierstrassDiv
PowerSeries
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsAdicComplete.toIsPrecomplete
IsLocalRing.maximalIdeal
CommRing.toCommSemiring
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
β€”IsAdicComplete.toIsPrecomplete
IsWeierstrassDivisor.of_map_ne_zero
IsWeierstrassDivisorAt.div_zero
weierstrassDiv_zero_right πŸ“–mathematicalβ€”weierstrassDiv
PowerSeries
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”IsWeierstrassDivisor.of_map_ne_zero
weierstrassDiv.eq_1
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
weierstrassMod_zero πŸ“–mathematicalβ€”weierstrassMod
PowerSeries
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.instZero
β€”weierstrassMod_zero_right
weierstrassMod_zero_left πŸ“–mathematicalβ€”weierstrassMod
PowerSeries
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsAdicComplete.toIsPrecomplete
IsLocalRing.maximalIdeal
CommRing.toCommSemiring
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
Polynomial
Polynomial.instZero
β€”IsAdicComplete.toIsPrecomplete
IsWeierstrassDivisor.of_map_ne_zero
IsWeierstrassDivisorAt.mod_zero
weierstrassMod_zero_right πŸ“–mathematicalβ€”weierstrassMod
PowerSeries
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.instZero
β€”IsWeierstrassDivisor.of_map_ne_zero
weierstrassMod.eq_1
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
weierstrassUnit_mul πŸ“–mathematicalβ€”weierstrassUnit
PowerSeries
MvPowerSeries.instMul
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
MulZeroClass.zero_mul
isWeierstrassFactorization_weierstrassDistinguished_weierstrassUnit
MulZeroClass.mul_zero
IsWeierstrassFactorization.elim
IsAdicComplete.toIsHausdorff
IsWeierstrassFactorizationAt.mul
weierstrassUnit_smul πŸ“–mathematicalβ€”weierstrassUnit
PowerSeries
Algebra.toSMul
CommRing.toCommSemiring
instSemiring
CommSemiring.toSemiring
instAlgebra
Algebra.id
β€”Algebra.smul_def
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
map_C
MulZeroClass.mul_zero
isWeierstrassFactorization_weierstrassDistinguished_weierstrassUnit
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
MulZeroClass.zero_mul
IsWeierstrassFactorization.elim
IsAdicComplete.toIsHausdorff
IsWeierstrassFactorizationAt.smul
zero_weierstrassDiv πŸ“–mathematicalβ€”weierstrassDiv
PowerSeries
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsAdicComplete.toIsPrecomplete
IsLocalRing.maximalIdeal
CommRing.toCommSemiring
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
β€”weierstrassDiv_zero_left
zero_weierstrassMod πŸ“–mathematicalβ€”weierstrassMod
PowerSeries
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsAdicComplete.toIsPrecomplete
IsLocalRing.maximalIdeal
CommRing.toCommSemiring
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
Polynomial
Polynomial.instZero
β€”weierstrassMod_zero_left

PowerSeries.IsWeierstrassDivision

Theorems

NameKindAssumesProvesValidatesDepends On
elim πŸ“–β€”PowerSeries.IsWeierstrassDivisionβ€”β€”PowerSeries.IsWeierstrassDivisorAt.eq_of_mul_add_eq_mul_add
PowerSeries.IsWeierstrassDivisor.of_map_ne_zero
PowerSeries.IsWeierstrassDivisionAt.degree_lt
PowerSeries.IsWeierstrassDivisionAt.eq_mul_add
eq_zero πŸ“–mathematicalPowerSeries.IsWeierstrassDivision
PowerSeries
PowerSeries.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.instZero
β€”elim
PowerSeries.isWeierstrassDivisionAt_zero
isUnit_of_map_ne_zero πŸ“–mathematicalPowerSeries.IsWeierstrassDivision
PowerSeries
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
PowerSeries.instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
PowerSeries.X
ENat.toNat
PowerSeries.order
IsLocalRing.ResidueField
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsLocalRing.ResidueField.field
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
PowerSeries.map
IsLocalRing.residue
IsUnitβ€”Ideal.instIsTwoSided_1
PowerSeries.isUnit_iff_constantCoeff
isUnit_map_iff
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
IsLocalRing.instIsLocalHomResidueFieldRingHomResidue
IsUnit.of_mul_eq_one
instIsDedekindFiniteMonoid
mul_comm
PowerSeries.coeff_zero_eq_constantCoeff
PowerSeries.coeff_map
Finset.sum_singleton
Finset.sum_subset
add_zero
PowerSeries.coeff_of_lt_order
PowerSeries.order_finite_iff_ne_zero
ENat.lt_lift_iff
ENat.lift_eq_toNat_of_lt_top
LE.le.lt_of_ne
Finset.antidiagonal.fst_le
Nat.instCanonicallyOrderedAdd
Mathlib.Tactic.Contrapose.contraposeβ‚„
Finset.mem_singleton
Finset.antidiagonal_congr
MulZeroClass.zero_mul
PowerSeries.coeff_mul
map_zero
MonoidWithZeroHomClass.toZeroHomClass
Polynomial.coeff_eq_zero_of_degree_lt
Polynomial.coeff_coe
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
PowerSeries.coeff_X_pow_self
PowerSeries.map_X
map_pow
isWeierstrassFactorization πŸ“–mathematicalPowerSeries.IsWeierstrassDivision
PowerSeries
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
PowerSeries.instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
PowerSeries.X
ENat.toNat
PowerSeries.order
IsLocalRing.ResidueField
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsLocalRing.ResidueField.field
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
PowerSeries.map
IsLocalRing.residue
PowerSeries.IsWeierstrassFactorization
Polynomial
Polynomial.instSub
CommRing.toRing
Polynomial.semiring
Polynomial.X
Units.val
Units
Units.instInv
IsUnit.unit
isUnit_of_map_ne_zero
β€”PowerSeries.IsWeierstrassDivisionAt.degree_lt
isUnit_of_map_ne_zero
Polynomial.degree_X_pow
IsLocalRing.toNontrivial
Polynomial.degree_sub_eq_left_of_degree_lt
Polynomial.natDegree.eq_1
Polynomial.coeff_sub
Polynomial.coeff_X_pow
LT.lt.ne
zero_sub
NonUnitalSubringClass.toNegMemClass
instNonUnitalSubringClassIdeal
PowerSeries.IsWeierstrassDivisionAt.coeff_f_sub_r_mem
Polynomial.coeff_coe
neg_mem_iff
PowerSeries.coeff_X_pow
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Polynomial.Monic.sub_of_left
Polynomial.monic_X_pow
Units.isUnit
PowerSeries.IsWeierstrassDivisionAt.eq_mul_add
sub_eq_iff_eq_add
mul_one
IsUnit.mul_val_inv
mul_assoc
add_mul
Distrib.rightDistribClass
Polynomial.coe_sub
Polynomial.coe_pow
Polynomial.coe_X
sub_mul
unique πŸ“–mathematicalPowerSeries.IsWeierstrassDivisionPowerSeries.weierstrassDiv
IsAdicComplete.toIsPrecomplete
IsLocalRing.maximalIdeal
CommRing.toCommSemiring
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
PowerSeries.weierstrassMod
β€”elim
IsAdicComplete.toIsHausdorff
IsAdicComplete.toIsPrecomplete
PowerSeries.isWeierstrassDivision_weierstrassDiv_weierstrassMod

PowerSeries.IsWeierstrassDivisionAt

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalPowerSeries.IsWeierstrassDivisionAtPowerSeries
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
PowerSeries.instCommRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.instAdd
β€”LE.le.trans_lt
Ideal.instIsTwoSided_1
Polynomial.degree_add_le
sup_lt_iff
degree_lt
eq_mul_add
Polynomial.coe_add
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
coeff_f_sub_r_mem πŸ“–mathematicalPowerSeries.IsWeierstrassDivisionAt
ENat.toNat
PowerSeries.order
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.semiring
DFunLike.coe
RingHom
PowerSeries
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
PowerSeries.map
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap
RingHom.id
PowerSeries.instAddCommMonoid
PowerSeries.instModule
LinearMap.instFunLike
PowerSeries.coeff
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
PowerSeries.instAddGroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Polynomial.toPowerSeries
β€”Ideal.instIsTwoSided_1
eq_mul_add
sub_eq_iff_eq_add
PowerSeries.coeff_mul_mem_ideal_of_coeff_left_mem_ideal
PowerSeries.coeff_of_lt_order_toNat
lt_of_le_of_lt
RingHom.instRingHomClass
Ideal.mk_ker
RingHom.mem_ker
PowerSeries.coeff_map
le_rfl
degree_lt πŸ“–mathematicalPowerSeries.IsWeierstrassDivisionAtWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
CommSemiring.toSemiring
CommRing.toCommSemiring
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
ENat.toNat
PowerSeries.order
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.semiring
DFunLike.coe
RingHom
PowerSeries
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
PowerSeries.map
β€”β€”
eq_mul_add πŸ“–mathematicalPowerSeries.IsWeierstrassDivisionAtPowerSeries
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
PowerSeries.instCommRing
MvPowerSeries.instMul
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.toPowerSeries
β€”β€”
smul πŸ“–mathematicalPowerSeries.IsWeierstrassDivisionAtPowerSeries
Algebra.toSMul
CommRing.toCommSemiring
PowerSeries.instSemiring
CommSemiring.toSemiring
PowerSeries.instAlgebra
Algebra.id
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
β€”LE.le.trans_lt
Ideal.instIsTwoSided_1
Polynomial.degree_smul_le
degree_lt
eq_mul_add
Algebra.smul_def
mul_add
Distrib.leftDistribClass
mul_left_comm
Polynomial.coe_mul
Polynomial.coe_C

PowerSeries.IsWeierstrassDivisor

Theorems

NameKindAssumesProvesValidatesDepends On
of_map_ne_zero πŸ“–mathematicalβ€”PowerSeries.IsWeierstrassDivisorβ€”eq_1
Ideal.instIsTwoSided_1
PowerSeries.IsWeierstrassDivisorAt.eq_1
IsLocalRing.notMem_maximalIdeal
PowerSeries.coeff_order
Mathlib.Tactic.Contrapose.contraposeβ‚„
PowerSeries.coeff_map
IsLocalRing.residue_eq_zero_iff

PowerSeries.IsWeierstrassDivisorAt

Definitions

NameCategoryTheorems
div πŸ“–CompOp
7 mathmath: div_coe_eq_zero, coeff_div, div_add, div_zero, isWeierstrassDivisionAt_div_mod, div_smul, coeff_div_sub_seq_mem
divCoeff πŸ“–CompOp
1 mathmath: coeff_div
mod' πŸ“–CompOp
4 mathmath: PowerSeries.IsWeierstrassFactorizationAt.algEquivQuotient_symm_apply, mod'_mk_eq_mod, Polynomial.IsDistinguishedAt.algEquivQuotient_symm_apply, mk_mod'_eq_self
seq πŸ“–CompOp
5 mathmath: coeff_seq_succ_sub_seq_mem, coeff_seq_mem, seq_one, seq_zero, coeff_div_sub_seq_mem

Theorems

NameKindAssumesProvesValidatesDepends On
coeff_div πŸ“–mathematicalPowerSeries.IsWeierstrassDivisorAtDFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries
PowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
PowerSeries.instModule
Semiring.toModule
LinearMap.instFunLike
PowerSeries.coeff
div
divCoeff
β€”IsScalarTower.right
coeff_div_sub_seq_mem πŸ“–mathematicalPowerSeries.IsWeierstrassDivisorAtIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
DFunLike.coe
LinearMap
RingHom.id
PowerSeries
PowerSeries.instAddCommMonoid
PowerSeries.instModule
LinearMap.instFunLike
PowerSeries.coeff
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
PowerSeries.instAddGroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
div
seq
β€”IsScalarTower.right
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
coeff_div
IsScalarTower.left
Ideal.mul_top
Ideal.instIsTwoSided_1
SModEq.symm
coeff_seq_mem πŸ“–mathematicalPowerSeries.IsWeierstrassDivisorAt
ENat.toNat
PowerSeries.order
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.semiring
DFunLike.coe
RingHom
PowerSeries
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
PowerSeries.map
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
LinearMap
RingHom.id
PowerSeries.instAddCommMonoid
PowerSeries.instModule
LinearMap.instFunLike
PowerSeries.coeff
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
PowerSeries.instAddGroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
MvPowerSeries.instMul
seq
β€”Ideal.instIsTwoSided_1
IsScalarTower.right
pow_zero
Ideal.one_eq_top
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
isUnit_shift
seq.eq_2
PowerSeries.eq_X_pow_mul_shift_add_trunc
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
sub_add_cancel_left
mul_neg
mul_assoc
mul_right_comm
add_mul
Distrib.rightDistribClass
IsUnit.mul_val_inv
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Polynomial.coeff_coe
PowerSeries.coeff_trunc
LE.le.not_gt
zero_sub
neg_mem_iff
NonUnitalSubringClass.toNegMemClass
instNonUnitalSubringClassIdeal
pow_succ'
PowerSeries.coeff_mul_mem_ideal_of_coeff_left_mem_ideal'
PowerSeries.coeff_mul_mem_ideal_mul_ideal_of_coeff_mem_ideal'
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
coeff_seq_succ_sub_seq_mem πŸ“–mathematicalPowerSeries.IsWeierstrassDivisorAtIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
DFunLike.coe
LinearMap
RingHom.id
PowerSeries
PowerSeries.instAddCommMonoid
PowerSeries.instModule
LinearMap.instFunLike
PowerSeries.coeff
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
PowerSeries.instAddGroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
seq
β€”IsScalarTower.right
Ideal.instIsTwoSided_1
isUnit_shift
seq.eq_2
add_sub_cancel_left
PowerSeries.coeff_mul_mem_ideal_of_coeff_left_mem_ideal'
coeff_seq_mem
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
div_add πŸ“–mathematicalPowerSeries.IsWeierstrassDivisorAtdiv
PowerSeries
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
PowerSeries.instCommRing
IsAdicComplete.toIsPrecomplete
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”IsAdicComplete.toIsPrecomplete
PowerSeries.IsWeierstrassDivisionAt.add
isWeierstrassDivisionAt_div_mod
eq_of_mul_add_eq_mul_add
IsAdicComplete.toIsHausdorff
PowerSeries.IsWeierstrassDivisionAt.degree_lt
PowerSeries.IsWeierstrassDivisionAt.eq_mul_add
div_coe_eq_zero πŸ“–mathematicalPowerSeries.IsWeierstrassDivisorAt
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
CommSemiring.toSemiring
CommRing.toCommSemiring
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
ENat.toNat
PowerSeries.order
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.semiring
DFunLike.coe
RingHom
PowerSeries
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
PowerSeries.map
div
Polynomial.toPowerSeries
IsAdicComplete.toIsPrecomplete
Ring.toAddCommGroup
Semiring.toModule
PowerSeries.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Ideal.instIsTwoSided_1
IsAdicComplete.toIsPrecomplete
isWeierstrassDivisionAt_div_mod
eq_of_mul_add_eq_mul_add
IsAdicComplete.toIsHausdorff
MulZeroClass.mul_zero
zero_add
div_smul πŸ“–mathematicalPowerSeries.IsWeierstrassDivisorAtdiv
PowerSeries
Algebra.toSMul
CommRing.toCommSemiring
PowerSeries.instSemiring
CommSemiring.toSemiring
PowerSeries.instAlgebra
Algebra.id
IsAdicComplete.toIsPrecomplete
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
β€”IsAdicComplete.toIsPrecomplete
PowerSeries.IsWeierstrassDivisionAt.smul
isWeierstrassDivisionAt_div_mod
eq_of_mul_add_eq_mul_add
IsAdicComplete.toIsHausdorff
PowerSeries.IsWeierstrassDivisionAt.degree_lt
PowerSeries.IsWeierstrassDivisionAt.eq_mul_add
div_zero πŸ“–mathematicalPowerSeries.IsWeierstrassDivisorAtdiv
PowerSeries
PowerSeries.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsAdicComplete.toIsPrecomplete
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”IsAdicComplete.toIsPrecomplete
smul_zero
zero_smul
div_smul
eq_of_mul_add_eq_mul_add πŸ“–β€”PowerSeries.IsWeierstrassDivisorAt
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
CommSemiring.toSemiring
CommRing.toCommSemiring
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
ENat.toNat
PowerSeries.order
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.semiring
DFunLike.coe
RingHom
PowerSeries
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
PowerSeries.map
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
PowerSeries.instCommRing
MvPowerSeries.instMul
Polynomial.toPowerSeries
β€”β€”Ideal.instIsTwoSided_1
Polynomial.coe_sub
mul_sub
eq_sub_iff_add_eq
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
eq_zero_of_mul_eq
lt_of_le_of_lt
Polynomial.degree_sub_le
max_lt
eq_zero_of_mul_eq πŸ“–mathematicalPowerSeries.IsWeierstrassDivisorAt
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
CommSemiring.toSemiring
CommRing.toCommSemiring
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
ENat.toNat
PowerSeries.order
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.semiring
DFunLike.coe
RingHom
PowerSeries
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
PowerSeries.map
MvPowerSeries.instMul
Polynomial.toPowerSeries
PowerSeries.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Polynomial
Polynomial.instZero
β€”Ideal.instIsTwoSided_1
pow_zero
Ideal.one_eq_top
IsScalarTower.right
lt_or_ge
PowerSeries.eq_X_pow_mul_shift_add_trunc
pow_succ'
PowerSeries.coeff_mul_mem_ideal_mul_ideal_of_coeff_mem_ideal
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
Polynomial.coeff_coe
Ideal.add_mem
PowerSeries.coeff_X_pow_mul'
LT.lt.not_ge
lt_of_le_of_lt
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
le_rfl
Polynomial.coeff_eq_zero_of_degree_lt
lt_of_lt_of_le
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
WithBot.charZero
Nat.instCharZero
isUnit_shift
eq_sub_iff_add_eq
mul_comm
add_mul
Distrib.rightDistribClass
PowerSeries.coeff_X_pow_mul
one_mul
IsUnit.val_inv_mul
mul_assoc
PowerSeries.coeff_mul_mem_ideal_of_coeff_right_mem_ideal'
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
Ideal.sub_mem
PowerSeries.coeff_mul_mem_ideal_mul_ideal_of_coeff_mem_ideal'
PowerSeries.ext
IsHausdorff.haus'
IsScalarTower.left
SModEq.zero
smul_eq_mul
Ideal.mul_top
Polynomial.coe_eq_zero_iff
MulZeroClass.mul_zero
isUnit_shift πŸ“–mathematicalPowerSeries.IsWeierstrassDivisorAtIsUnit
PowerSeries
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
PowerSeries.instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
PowerSeries.instModule
Semiring.toModule
LinearMap.instFunLike
PowerSeries.coeff
ENat.toNat
PowerSeries.order
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.semiring
RingHom
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
PowerSeries.map
β€”Ideal.instIsTwoSided_1
zero_add
isWeierstrassDivisionAt_div_mod πŸ“–mathematicalPowerSeries.IsWeierstrassDivisorAtPowerSeries.IsWeierstrassDivisionAt
div
IsAdicComplete.toIsPrecomplete
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
mod
β€”IsAdicComplete.toIsPrecomplete
eq_or_ne
IsHausdorff.subsingleton
IsAdicComplete.toIsHausdorff
PowerSeries.instSubsingleton
IsPrecomplete.top
Unique.instSubsingleton
PowerSeries.isWeierstrassDivisionAt_zero
PowerSeries.degree_trunc_lt
Ideal.instIsTwoSided_1
mod.eq_1
add_comm
sub_eq_iff_eq_add
PowerSeries.ext
Polynomial.coeff_coe
PowerSeries.coeff_trunc
IsHausdorff.haus'
IsScalarTower.left
IsScalarTower.right
SModEq.zero
smul_eq_mul
Ideal.mul_top
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Ideal.sub_mem
coeff_seq_mem
not_lt
PowerSeries.coeff_mul_mem_ideal_of_coeff_right_mem_ideal'
coeff_div_sub_seq_mem
mk_mod'_eq_self πŸ“–mathematicalPowerSeries.IsWeierstrassDivisorAtDFunLike.coe
RingHom
PowerSeries
HasQuotient.Quotient
Ideal
Ring.toSemiring
PowerSeries.instRing
CommRing.toRing
Ideal.instHasQuotient
Ideal.span
PowerSeries.instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instSingletonSet
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
PowerSeries.instCommRing
RingHom.instFunLike
Polynomial.toPowerSeries
LinearMap
RingHom.id
Ideal.instHasQuotient_1
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal.Quotient.commRing
Polynomial.commRing
Submodule.Quotient.module'
PowerSeries.instAddCommGroup
Ring.toAddCommGroup
Semiring.toModule
Algebra.toSMul
PowerSeries.instAlgebra
Algebra.id
PowerSeries.instModule
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
IsScalarTower.right
Polynomial.module
LinearMap.instFunLike
mod'
β€”Ideal.instIsTwoSided_1
IsScalarTower.right
Ideal.Quotient.mk_surjective
IsAdicComplete.toIsPrecomplete
mod'_mk_eq_mod
Ideal.Quotient.mk_eq_mk_iff_sub_mem
Ideal.mem_span_singleton'
eq_sub_iff_add_eq
mul_comm
PowerSeries.IsWeierstrassDivisionAt.eq_mul_add
isWeierstrassDivisionAt_div_mod
mod'_mk_eq_mod πŸ“–mathematicalPowerSeries.IsWeierstrassDivisorAtDFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
HasQuotient.Quotient
PowerSeries
Ideal
PowerSeries.instSemiring
Ideal.instHasQuotient_1
PowerSeries.instCommRing
Ideal.span
Set
Set.instSingletonSet
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal.Quotient.commRing
Polynomial.commRing
Submodule.Quotient.module'
PowerSeries.instRing
CommRing.toRing
PowerSeries.instAddCommGroup
Ring.toAddCommGroup
Semiring.toModule
Algebra.toSMul
PowerSeries.instAlgebra
Algebra.id
PowerSeries.instModule
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Ring.toSemiring
IsScalarTower.right
Polynomial.module
LinearMap.instFunLike
mod'
RingHom
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
mod
IsAdicComplete.toIsPrecomplete
β€”IsScalarTower.right
Ideal.instIsTwoSided_1
mod_add πŸ“–mathematicalPowerSeries.IsWeierstrassDivisorAtmod
PowerSeries
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
PowerSeries.instCommRing
IsAdicComplete.toIsPrecomplete
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
Polynomial.instAdd
β€”IsAdicComplete.toIsPrecomplete
PowerSeries.IsWeierstrassDivisionAt.add
isWeierstrassDivisionAt_div_mod
eq_of_mul_add_eq_mul_add
IsAdicComplete.toIsHausdorff
PowerSeries.IsWeierstrassDivisionAt.degree_lt
PowerSeries.IsWeierstrassDivisionAt.eq_mul_add
mod_coe_eq_self πŸ“–mathematicalPowerSeries.IsWeierstrassDivisorAt
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
CommSemiring.toSemiring
CommRing.toCommSemiring
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
ENat.toNat
PowerSeries.order
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.semiring
DFunLike.coe
RingHom
PowerSeries
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
PowerSeries.map
mod
Polynomial.toPowerSeries
IsAdicComplete.toIsPrecomplete
Ring.toAddCommGroup
Semiring.toModule
β€”Ideal.instIsTwoSided_1
IsAdicComplete.toIsPrecomplete
isWeierstrassDivisionAt_div_mod
eq_of_mul_add_eq_mul_add
IsAdicComplete.toIsHausdorff
MulZeroClass.mul_zero
zero_add
mod_smul πŸ“–mathematicalPowerSeries.IsWeierstrassDivisorAtmod
PowerSeries
Algebra.toSMul
CommRing.toCommSemiring
PowerSeries.instSemiring
CommSemiring.toSemiring
PowerSeries.instAlgebra
Algebra.id
IsAdicComplete.toIsPrecomplete
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
β€”IsAdicComplete.toIsPrecomplete
PowerSeries.IsWeierstrassDivisionAt.smul
isWeierstrassDivisionAt_div_mod
eq_of_mul_add_eq_mul_add
IsAdicComplete.toIsHausdorff
PowerSeries.IsWeierstrassDivisionAt.degree_lt
PowerSeries.IsWeierstrassDivisionAt.eq_mul_add
mod_zero πŸ“–mathematicalPowerSeries.IsWeierstrassDivisorAtmod
PowerSeries
PowerSeries.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsAdicComplete.toIsPrecomplete
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
Polynomial.instZero
β€”IsAdicComplete.toIsPrecomplete
mod.congr_simp
smul_zero
zero_smul
mod_smul
seq_one πŸ“–mathematicalPowerSeries.IsWeierstrassDivisorAtseq
PowerSeries
MvPowerSeries.instMul
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
PowerSeries.instModule
Semiring.toModule
LinearMap.instFunLike
PowerSeries.coeff
ENat.toNat
PowerSeries.order
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.semiring
RingHom
PowerSeries.instSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
PowerSeries.map
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Units
Units.instInv
IsUnit.unit
isUnit_shift
β€”Ideal.instIsTwoSided_1
isUnit_shift
MulZeroClass.mul_zero
zero_add
sub_zero
seq_zero πŸ“–mathematicalPowerSeries.IsWeierstrassDivisorAtseq
PowerSeries
PowerSeries.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”β€”

PowerSeries.IsWeierstrassFactorization

Theorems

NameKindAssumesProvesValidatesDepends On
degree_eq_coe_lift_order_map πŸ“–mathematicalPowerSeries.IsWeierstrassFactorizationPolynomial.degree
CommSemiring.toSemiring
CommRing.toCommSemiring
WithBot
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
ENat.lift
PowerSeries.order
IsLocalRing.ResidueField
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsLocalRing.ResidueField.field
DFunLike.coe
RingHom
PowerSeries
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
RingHom.instFunLike
PowerSeries.map
IsLocalRing.residue
ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Top.top
instTopENat
PowerSeries.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
PowerSeries.order_finite_iff_ne_zero
map_ne_zero
β€”PowerSeries.IsWeierstrassFactorizationAt.degree_eq_coe_lift_order_map_of_ne_top
Ideal.IsMaximal.ne_top
IsLocalRing.maximalIdeal.isMaximal
elim πŸ“–β€”PowerSeries.IsWeierstrassFactorizationβ€”β€”PowerSeries.IsWeierstrassFactorizationAt.isUnit
PowerSeries.IsWeierstrassDivision.elim
map_ne_zero
isWeierstrassDivision
Units.ext_iff
isWeierstrassDivision πŸ“–mathematicalPowerSeries.IsWeierstrassFactorizationPowerSeries.IsWeierstrassDivision
PowerSeries
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
PowerSeries.instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
PowerSeries.X
ENat.toNat
PowerSeries.order
IsLocalRing.ResidueField
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsLocalRing.ResidueField.field
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
PowerSeries.map
IsLocalRing.residue
Units.val
Units
Units.instInv
IsUnit.unit
PowerSeries.IsWeierstrassFactorizationAt.isUnit
IsLocalRing.maximalIdeal
Polynomial
Polynomial.instSub
CommRing.toRing
Polynomial.semiring
Polynomial.X
β€”PowerSeries.IsWeierstrassFactorizationAt.isUnit
LT.lt.trans_eq
Ideal.instIsTwoSided_1
Polynomial.degree_sub_lt
PowerSeries.order_finite_iff_ne_zero
map_ne_zero
degree_eq_coe_lift_order_map
Polynomial.degree_X_pow
IsLocalRing.toNontrivial
ENat.lift_eq_toNat_of_lt_top
Polynomial.Monic.ne_zero
Polynomial.monic_X_pow
Polynomial.Monic.leadingCoeff
Polynomial.IsDistinguishedAt.monic
PowerSeries.IsWeierstrassFactorizationAt.isDistinguishedAt
WithBot.charZero
Nat.instCharZero
PowerSeries.IsWeierstrassFactorizationAt.eq_mul
mul_assoc
IsUnit.mul_val_inv
mul_one
Polynomial.coe_sub
Polynomial.coe_pow
Polynomial.coe_X
add_sub_cancel
map_ne_zero πŸ“–β€”PowerSeries.IsWeierstrassFactorizationβ€”β€”PowerSeries.IsWeierstrassFactorizationAt.map_ne_zero_of_ne_top
Ideal.IsMaximal.ne_top
IsLocalRing.maximalIdeal.isMaximal
natDegree_eq_toNat_order_map πŸ“–mathematicalPowerSeries.IsWeierstrassFactorizationPolynomial.natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
ENat.toNat
PowerSeries.order
IsLocalRing.ResidueField
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsLocalRing.ResidueField.field
DFunLike.coe
RingHom
PowerSeries
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
RingHom.instFunLike
PowerSeries.map
IsLocalRing.residue
β€”PowerSeries.IsWeierstrassFactorizationAt.natDegree_eq_toNat_order_map_of_ne_top
Ideal.IsMaximal.ne_top
IsLocalRing.maximalIdeal.isMaximal
unique πŸ“–mathematicalPowerSeries.IsWeierstrassFactorizationPowerSeries.weierstrassDistinguished
PowerSeries.weierstrassUnit
β€”elim
IsAdicComplete.toIsHausdorff
PowerSeries.isWeierstrassFactorization_weierstrassDistinguished_weierstrassUnit

PowerSeries.IsWeierstrassFactorizationAt

Definitions

NameCategoryTheorems
algEquivQuotient πŸ“–CompOp
2 mathmath: algEquivQuotient_apply, algEquivQuotient_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
algEquivQuotient_apply πŸ“–mathematicalPowerSeries.IsWeierstrassFactorizationAtDFunLike.coe
AlgEquiv
HasQuotient.Quotient
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal
Polynomial.semiring
Ideal.instHasQuotient_1
Polynomial.commRing
Ideal.span
Set
Set.instSingletonSet
PowerSeries
PowerSeries.instSemiring
PowerSeries.instCommRing
Ideal.Quotient.semiring
Ideal.instAlgebraQuotient
Polynomial.algebraOfAlgebra
Algebra.id
PowerSeries.instAlgebra
AlgEquiv.instFunLike
algEquivQuotient
Polynomial.toPowerSeries
Ring.toSemiring
PowerSeries.instRing
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.Quotient.algebra
Ideal.quotientEquivAlgOfEq
AlgHom
Polynomial.ring
AlgHom.funLike
Ideal.quotientMapₐ
Polynomial.coeToPowerSeries.algHom
β€”β€”
algEquivQuotient_symm_apply πŸ“–mathematicalPowerSeries.IsWeierstrassFactorizationAtDFunLike.coe
AlgEquiv
HasQuotient.Quotient
PowerSeries
Ideal
PowerSeries.instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
PowerSeries.instCommRing
Ideal.span
Set
Set.instSingletonSet
Polynomial
Polynomial.semiring
Polynomial.commRing
Ideal.Quotient.semiring
Ideal.instAlgebraQuotient
PowerSeries.instAlgebra
Algebra.id
Polynomial.algebraOfAlgebra
AlgEquiv.instFunLike
AlgEquiv.symm
algEquivQuotient
RingHom
Ring.toSemiring
Polynomial.ring
CommRing.toRing
Ideal.instHasQuotient
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
LinearMap
RingHom.id
Polynomial.toPowerSeries
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal.Quotient.commRing
Submodule.Quotient.module'
PowerSeries.instRing
PowerSeries.instAddCommGroup
Ring.toAddCommGroup
Semiring.toModule
Algebra.toSMul
PowerSeries.instModule
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
IsScalarTower.right
Polynomial.module
LinearMap.instFunLike
PowerSeries.IsWeierstrassDivisorAt.mod'
Polynomial.IsDistinguishedAt.isWeierstrassDivisorAt'
isDistinguishedAt
IsAdicComplete.toIsHausdorff
Ideal.Quotient.algebra
Ideal.quotientEquivAlgOfEq
β€”Ideal.instIsTwoSided_1
IsScalarTower.right
Polynomial.IsDistinguishedAt.isWeierstrassDivisorAt'
isDistinguishedAt
IsAdicComplete.toIsHausdorff
Ideal.quotientEquivAlgOfEq_symm
degree_eq_coe_lift_order_map_of_ne_top πŸ“–mathematicalPowerSeries.IsWeierstrassFactorizationAtPolynomial.degree
CommSemiring.toSemiring
CommRing.toCommSemiring
WithBot
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
ENat.lift
PowerSeries.order
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.semiring
DFunLike.coe
RingHom
PowerSeries
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
PowerSeries.map
ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Top.top
instTopENat
PowerSeries.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
PowerSeries.order_finite_iff_ne_zero
map_ne_zero_of_ne_top
β€”Polynomial.IsDistinguishedAt.degree_eq_coe_lift_order_map
isDistinguishedAt
Mathlib.Tactic.Contrapose.contraposeβ‚„
Ideal.eq_top_of_isUnit_mem
PowerSeries.isUnit_iff_constantCoeff
isUnit
eq_mul
eq_mul πŸ“–mathematicalPowerSeries.IsWeierstrassFactorizationAtPowerSeries
MvPowerSeries.instMul
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.toPowerSeries
β€”β€”
isDistinguishedAt πŸ“–mathematicalPowerSeries.IsWeierstrassFactorizationAtPolynomial.IsDistinguishedAtβ€”β€”
isUnit πŸ“–mathematicalPowerSeries.IsWeierstrassFactorizationAtIsUnit
PowerSeries
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
PowerSeries.instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”β€”
map_ne_zero_of_ne_top πŸ“–β€”PowerSeries.IsWeierstrassFactorizationAtβ€”β€”Ideal.Quotient.nontrivial_iff
Ideal.instIsTwoSided_1
eq_mul
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
Polynomial.polynomial_map_coe
IsUnit.mul_left_eq_zero
IsUnit.map
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
isUnit
Nat.cast_zero
Polynomial.map_monic_ne_zero
Polynomial.IsDistinguishedAt.monic
isDistinguishedAt
mul πŸ“–mathematicalPowerSeries.IsWeierstrassFactorizationAtPowerSeries
MvPowerSeries.instMul
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
Polynomial.instMul
β€”Polynomial.IsDistinguishedAt.mul
isDistinguishedAt
IsUnit.mul
isUnit
eq_mul
Polynomial.coe_mul
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
natDegree_eq_toNat_order_map_of_ne_top πŸ“–mathematicalPowerSeries.IsWeierstrassFactorizationAtPolynomial.natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
ENat.toNat
PowerSeries.order
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.semiring
DFunLike.coe
RingHom
PowerSeries
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
PowerSeries.map
β€”Ideal.instIsTwoSided_1
Polynomial.natDegree.eq_1
PowerSeries.order_finite_iff_ne_zero
map_ne_zero_of_ne_top
degree_eq_coe_lift_order_map_of_ne_top
ENat.lift_eq_toNat_of_lt_top
WithBot.unbotD_coe
smul πŸ“–mathematicalPowerSeries.IsWeierstrassFactorizationAt
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
PowerSeries
Algebra.toSMul
PowerSeries.instSemiring
PowerSeries.instAlgebra
Algebra.id
β€”isDistinguishedAt
Algebra.smul_def
IsUnit.mul
IsUnit.map
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
isUnit
eq_mul
Algebra.mul_smul_comm

---

← Back to Index