Documentation Verification Report

Prime

📁 Source: Mathlib/RingTheory/Prime.lean

Statistics

MetricCount
Definitions0
Theoremsabs, neg, mul_eq_mul_prime_pow, mul_eq_mul_prime_prod
4
Total4

Prime

Theorems

NameKindAssumesProvesValidatesDepends On
abs 📖mathematicalPrime
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
abs_choice
neg
neg 📖mathematicalPrime
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
neg_ne_zero
IsUnit.neg_iff

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
mul_eq_mul_prime_pow 📖Prime
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
Monoid.toNatPow
MonoidWithZero.toMonoid
mul_eq_mul_prime_prod
Finset.prod_const
Finset.card_range
Finset.card_union_of_disjoint
mul_eq_mul_prime_prod 📖mathematicalPrime
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
Finset.prod
CommMonoidWithZero.toCommMonoid
Finset
Finset.instUnion
Disjoint
Finset.partialOrder
Finset.instOrderBot
Finset.induction
Finset.union_idempotent
mul_one
Finset.mem_insert_self
Finset.mem_insert_of_mem
mul_assoc
Finset.prod_insert
Finset.mem_union_left
Finset.mem_union_right
Prime.dvd_or_dvd
mul_comm
Finset.insert_union
Finset.disjoint_insert_left
mul_right_inj'
IsCancelMulZero.toIsLeftCancelMulZero
Prime.ne_zero
mul_left_comm
Finset.union_insert
Finset.disjoint_insert_right
mul_left_inj'
IsCancelMulZero.toIsRightCancelMulZero
mul_right_comm

---

← Back to Index