Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/QuasiFinite/Basic.lean

Statistics

MetricCount
DefinitionsQuasiFiniteAt
1
TheoremsbaseChange, discreteTopology_primeSpectrum, eq_of_le_of_under_eq, finite_comap_preimage, finite_comap_preimage_singleton, finite_fiber, finite_primeSpectrum, finite_primesOver, iff_finite_comap_preimage_singleton, iff_finite_primesOver, iff_of_algEquiv, iff_of_isArtinianRing, instFiniteResidueField, instIsArtinianRingFiber, instLocalization, instOfFinite, instOfIsFractionRing, instQuotientIdeal, instResidueField, isDiscrete_comap_preimage, isDiscrete_comap_preimage_singleton, of_forall_exists_mul_mem_range, of_isIntegral_of_finiteType, of_isLocalization, of_restrictScalars, of_surjective_algHom, trans, baseChange, comap_algEquiv, eq_of_le_of_under_eq, exists_basicOpen_eq_singleton, isClopen_singleton, of_isOpen_singleton, of_le, of_surjectiveOnStalks, of_surjectiveOnStalks_of_liesOver, instFiniteResidueFieldOfQuasiFiniteAt, quasiFinite_iff, lift_residueField_surjective, exists_not_mem_forall_mem_of_ne_of_liesOver, of_quasiFinite
41
Total42

Algebra

Definitions

NameCategoryTheorems
QuasiFiniteAt πŸ“–MathDef
12 mathmath: QuasiFiniteAt.baseChange, QuasiFiniteAt.of_weaklyQuasiFiniteAt, QuasiFiniteAt.of_quasiFiniteAt_residueField, Polynomial.not_quasiFiniteAt, ZariskisMainProperty.quasiFiniteAt, quasiFiniteAt_iff_isOpen_singleton_fiber, QuasiFiniteAt.of_isOpen_singleton, QuasiFiniteAt.of_isOpen_singleton_fiber, QuasiFiniteAt.of_le, QuasiFiniteAt.of_surjectiveOnStalks_of_liesOver, QuasiFiniteAt.of_surjectiveOnStalks, QuasiFiniteAt.comap_algEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
instFiniteResidueFieldOfQuasiFiniteAt πŸ“–mathematicalβ€”Module.Finite
Ideal.ResidueField
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsLocalRing.ResidueField.field
Localization.AtPrime
CommRing.toCommSemiring
OreLocalization.instCommRing
Ideal.primeCompl
CommSemiring.toSemiring
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsLocalRing.instCommRingResidueField
toModule
Semifield.toCommSemiring
IsLocalRing.ResidueField.instAlgebra
Localization.AtPrime.instAlgebraOfLiesOver
instIsLocalHomAtPrimeRingHomAlgebraMap
β€”Localization.AtPrime.isLocalRing
Ideal.LiesOver.trans
OreLocalization.instIsScalarTower
IsScalarTower.right
IsLocalization.AtPrime.liesOver_maximalIdeal
Localization.isLocalization
Ideal.IsMaximal.isPrime'
IsLocalRing.maximalIdeal.isMaximal
instIsLocalHomAtPrimeRingHomAlgebraMap
IsLocalRing.ResidueField.instIsScalarTower_1
Localization.AtPrime.instIsScalarTower_1
RingHom.SurjectiveOnStalks.residueFieldMap_bijective
RingHom.surjectiveOnStalks_of_isLocalization
Ideal.over_def
Module.Finite.of_surjective
RingHomSurjective.ids
QuasiFinite.instFiniteResidueField
AlgEquiv.surjective
quasiFinite_iff πŸ“–mathematicalβ€”QuasiFiniteβ€”to_smulCommClass

Algebra.QuasiFinite

Theorems

NameKindAssumesProvesValidatesDepends On
baseChange πŸ“–mathematicalβ€”Algebra.QuasiFinite
TensorProduct
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
CommSemiring.toSemiring
Algebra.TensorProduct.instCommRing
Algebra.TensorProduct.leftAlgebra
Algebra.id
Algebra.to_smulCommClass
β€”Algebra.to_smulCommClass
Ideal.IsPrime.under
Ideal.over_under
instIsLocalHomAtPrimeRingHomAlgebraMap
IsScalarTower.to_smulCommClass
IsScalarTower.right
IsLocalRing.instIsScalarTowerResidueField
OreLocalization.instIsScalarTower
IsLocalRing.ResidueField.instIsScalarTower
Localization.AtPrime.instIsScalarTower
IsScalarTower.left
Module.Finite.of_surjective
RingHomSurjective.ids
Module.Finite.base_change
finite_fiber
AlgEquiv.surjective
discreteTopology_primeSpectrum πŸ“–mathematicalβ€”DiscreteTopology
PrimeSpectrum
CommRing.toCommSemiring
PrimeSpectrum.zariskiTopology
β€”isDiscrete_univ_iff
isDiscrete_comap_preimage
eq_of_le_of_under_eq πŸ“–β€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.under
β€”β€”IsDiscrete.eq_of_specializes
Ideal.IsPrime.under
isDiscrete_comap_preimage_singleton
PrimeSpectrum.ext
finite_comap_preimage πŸ“–mathematicalβ€”Set.Finite
PrimeSpectrum
CommRing.toCommSemiring
Set.preimage
PrimeSpectrum.comap
algebraMap
CommSemiring.toSemiring
β€”Set.Finite.preimage'
finite_comap_preimage_singleton
finite_comap_preimage_singleton πŸ“–mathematicalβ€”Set.Finite
PrimeSpectrum
CommRing.toCommSemiring
Set.preimage
PrimeSpectrum.comap
algebraMap
CommSemiring.toSemiring
Set
Set.instSingletonSet
β€”PrimeSpectrum.isPrime
Equiv.finite_iff
finite_of_compact_of_discrete
PrimeSpectrum.compactSpace
PrimeSpectrum.instDiscreteTopology
instIsArtinianRingFiber
finite_fiber πŸ“–mathematicalβ€”Module.Finite
Ideal.ResidueField
Ideal.Fiber
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsLocalRing.ResidueField.field
Localization.AtPrime
CommRing.toCommSemiring
OreLocalization.instCommRing
Ideal.primeCompl
CommSemiring.toSemiring
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
TensorProduct.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsLocalRing.instCommRingResidueField
Algebra.toModule
IsLocalRing.ResidueField.algebra
OreLocalization.instAlgebra
Algebra.id
TensorProduct.leftModule
Semiring.toModule
Algebra.to_smulCommClass
IsLocalRing.ResidueField
β€”β€”
finite_primeSpectrum πŸ“–mathematicalβ€”Finite
PrimeSpectrum
CommRing.toCommSemiring
β€”Set.finite_univ_iff
finite_comap_preimage
Set.finite_univ
finite_primesOver πŸ“–mathematicalβ€”Set.Finite
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.primesOver
β€”Set.Finite.subset
Set.Finite.image
finite_comap_preimage_singleton
PrimeSpectrum.ext
Ideal.LiesOver.over
Ideal.IsPrime.under
Set.finite_empty
iff_finite_comap_preimage_singleton πŸ“–mathematicalβ€”Algebra.QuasiFinite
Set.Finite
PrimeSpectrum
CommRing.toCommSemiring
Set.preimage
PrimeSpectrum.comap
algebraMap
CommSemiring.toSemiring
Set
Set.instSingletonSet
β€”finite_comap_preimage_singleton
Algebra.to_smulCommClass
Module.finite_iff_isArtinianRing
Algebra.FiniteType.baseChange
instIsArtinianOfIsSemisimpleModuleOfFinite
IsSemisimpleRing.isSemisimpleModule
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
FiniteDimensional.finiteDimensional_self
isArtinianRing_iff_isNoetherianRing_krullDimLE_zero
isJacobsonRing_of_finiteType
instIsJacobsonRingOfKrullDimLEOfNatNat
PrimeSpectrum.instKrullDimLEOfNatNat
PrimeSpectrum.isPrime
Equiv.finite_iff
Algebra.FiniteType.isNoetherianRing
instIsNoetherianRingOfIsArtinianRing
PrimeSpectrum.discreteTopology_iff_finite_and_krullDimLE_zero
instDiscreteTopologyOfFiniteOfJacobsonSpace
PrimeSpectrum.instJacobsonSpaceOfIsJacobsonRing
iff_finite_primesOver πŸ“–mathematicalβ€”Algebra.QuasiFinite
Set.Finite
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.primesOver
β€”iff_finite_comap_preimage_singleton
Equiv.forall_congr_left
Set.finite_image_iff
Function.Injective.injOn
PrimeSpectrum.ext
Set.ext
RingHom.instRingHomClass
Equiv.exists_congr_left
iff_of_algEquiv πŸ“–mathematicalβ€”Algebra.QuasiFiniteβ€”of_surjective_algHom
AlgEquiv.surjective
iff_of_isArtinianRing πŸ“–mathematicalβ€”Algebra.QuasiFinite
Module.Finite
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
β€”Module.Finite.of_quasiFinite
instOfFinite
instFiniteResidueField πŸ“–mathematicalβ€”Module.Finite
Ideal.ResidueField
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsLocalRing.ResidueField.field
Localization.AtPrime
CommRing.toCommSemiring
OreLocalization.instCommRing
Ideal.primeCompl
CommSemiring.toSemiring
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsLocalRing.instCommRingResidueField
Algebra.toModule
Semifield.toCommSemiring
IsLocalRing.ResidueField.instAlgebra
Localization.AtPrime.instAlgebraOfLiesOver
instIsLocalHomAtPrimeRingHomAlgebraMap
β€”instIsLocalHomAtPrimeRingHomAlgebraMap
of_restrictScalars
IsLocalRing.ResidueField.instIsScalarTower
Localization.AtPrime.instIsScalarTower
IsScalarTower.left
instResidueField
Module.Finite.of_quasiFinite
instIsArtinianOfIsSemisimpleModuleOfFinite
IsSemisimpleRing.isSemisimpleModule
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
FiniteDimensional.finiteDimensional_self
instIsArtinianRingFiber πŸ“–mathematicalβ€”IsArtinianRing
Ideal.Fiber
Algebra.TensorProduct.instSemiring
Ideal.ResidueField
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsLocalRing.ResidueField.field
Localization.AtPrime
OreLocalization.instCommRing
Ideal.primeCompl
CommSemiring.toSemiring
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
IsLocalRing.ResidueField.algebra
OreLocalization.instAlgebra
Algebra.id
β€”IsArtinianRing.of_finite
Algebra.to_smulCommClass
IsScalarTower.right
instIsArtinianOfIsSemisimpleModuleOfFinite
IsSemisimpleRing.isSemisimpleModule
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
FiniteDimensional.finiteDimensional_self
finite_fiber
instLocalization πŸ“–mathematicalβ€”Algebra.QuasiFinite
Localization
CommRing.toCommMonoid
OreLocalization.instCommRing
OreLocalization.oreSetComm
OreLocalization.instAlgebra
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”of_isLocalization
OreLocalization.instIsScalarTower
IsScalarTower.right
Localization.isLocalization
instOfFinite πŸ“–mathematicalβ€”Algebra.QuasiFiniteβ€”Algebra.to_smulCommClass
Module.Finite.base_change
Localization.AtPrime.isLocalRing
instOfIsFractionRing πŸ“–mathematicalβ€”Algebra.QuasiFiniteβ€”of_isLocalization
IsScalarTower.left
instOfFinite
Module.Finite.self
instQuotientIdeal πŸ“–mathematicalβ€”Algebra.QuasiFinite
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Ideal.Quotient.commRing
Ideal.instAlgebraQuotient
β€”of_surjective_algHom
Ideal.instIsTwoSided_1
Ideal.Quotient.mk_surjective
instResidueField πŸ“–mathematicalβ€”Algebra.QuasiFinite
Ideal.ResidueField
IsLocalRing.instCommRingResidueField
Localization.AtPrime
CommRing.toCommSemiring
OreLocalization.instCommRing
Ideal.primeCompl
CommSemiring.toSemiring
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
IsLocalRing.ResidueField.algebra
OreLocalization.instAlgebra
β€”trans
instIsScalarTowerQuotientIdealResidueField
instQuotientIdeal
instOfIsFractionRing
instIsFractionRingQuotientIdealResidueField
isDiscrete_comap_preimage πŸ“–mathematicalIsDiscrete
PrimeSpectrum
CommRing.toCommSemiring
PrimeSpectrum.zariskiTopology
Set.preimage
PrimeSpectrum.comap
algebraMap
CommSemiring.toSemiring
β€”IsDiscrete.preimage'
Continuous.continuousOn
PrimeSpectrum.continuous_comap
isDiscrete_comap_preimage_singleton
isDiscrete_comap_preimage_singleton πŸ“–mathematicalβ€”IsDiscrete
PrimeSpectrum
CommRing.toCommSemiring
PrimeSpectrum.zariskiTopology
Set.preimage
PrimeSpectrum.comap
algebraMap
CommSemiring.toSemiring
Set
Set.instSingletonSet
β€”Homeomorph.discreteTopology
PrimeSpectrum.isPrime
PrimeSpectrum.instDiscreteTopology
instIsArtinianRingFiber
of_forall_exists_mul_mem_range πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
AlgHom
AlgHom.funLike
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
AlgHom.range
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.QuasiFiniteβ€”MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
OreLocalization.instIsScalarTower
IsScalarTower.right
Localization.isLocalization
Submonoid.instSubmonoidClass
IsLocalization.lift_mk'
of_surjective_algHom
instLocalization
of_isIntegral_of_finiteType πŸ“–mathematicalβ€”Algebra.QuasiFiniteβ€”Algebra.subset_adjoin
Localization.isLocalization
IsLocalization.Away.algebraMap_isUnit
IsScalarTower.right
OreLocalization.instIsScalarTower
IsScalarTower.of_algebraMap_eq
IsLocalization.Away.lift_eq
IsScalarTower.to₁₃₄
IsScalarTower.subalgebra'
IsLocalization.exists_mk'_eq
IsIntegral.tower_top
IsIntegral.algebraMap
Algebra.IsIntegral.isIntegral
IsLocalization.mk'_eq_iff_eq_mul
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Algebra.smul_mul_assoc
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
Subalgebra.instSubsemiringClass
Localization.mk_eq_mk'
Algebra.smul_def
map_one
MonoidHomClass.toOneHomClass
one_pow
one_mul
mul_pow
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
IsIntegral.smul
IsScalarTower.left
Algebra.FiniteType.of_restrictScalars_finiteType
Algebra.IsIntegral.finite
Algebra.finite_adjoin_simple_of_isIntegral
of_isLocalization
instOfFinite
trans
of_isLocalization πŸ“–mathematicalβ€”Algebra.QuasiFiniteβ€”trans
Module.Finite.of_surjective
Algebra.to_smulCommClass
RingHomSurjective.ids
FiniteDimensional.finiteDimensional_self
LinearMap.IsScalarTower.compatibleSMul'
TensorProduct.isScalarTower_left
IsScalarTower.right
LinearMap.coe_restrictScalars
LinearMap.range_eq_top
top_le_iff
TensorProduct.span_tmul_eq_top
Submodule.span_le
IsLocalization.exists_mk'_eq
IsUnit.mul_left_injective
IsUnit.map
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
IsLocalization.map_units
div_zero
TensorProduct.zero_tmul
AlgHom.commutes
MulZeroClass.mul_zero
Ideal.instIsTwoSided_1
map_divβ‚€
RingHom.instRingHomClass
RingHomCompTriple.comp_apply
RingHomCompTriple.right_ids
div_mul_cancelβ‚€
mul_one
smulCommClass_self
TensorProduct.smul_tmul
TensorProduct.CompatibleSMul.isScalarTower
IsLocalRing.instIsScalarTowerResidueField
OreLocalization.instIsScalarTower
IsScalarTower.left
TensorProduct.tmul_smul
Algebra.algebraMap_eq_smul_one
Algebra.mul_smul_comm
IsLocalization.smul_mk'_self
of_restrictScalars πŸ“–mathematicalβ€”Algebra.QuasiFiniteβ€”Algebra.to_smulCommClass
IsScalarTower.right
IsScalarTower.to_smulCommClass'
IsLocalRing.instIsScalarTowerResidueField
OreLocalization.instIsScalarTower
TensorProduct.isScalarTower_left
TensorProduct.isScalarTower
Commute.all
IsScalarTower.to_smulCommClass
AlgHom.coe_restrictScalars'
AlgHom.coe_toLinearMap
RingHomSurjective.ids
LinearMap.range_eq_top
top_le_iff
TensorProduct.span_tmul_eq_top
Submodule.span_le
mul_one
one_mul
Module.Finite.of_quasiFinite
instIsArtinianOfIsSemisimpleModuleOfFinite
IsSemisimpleRing.isSemisimpleModule
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
FiniteDimensional.finiteDimensional_self
baseChange
Module.Finite.of_surjective
of_surjective_algHom πŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
Algebra.QuasiFiniteβ€”IsScalarTower.of_algebraMap_eq'
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.comp_algebraMap
Module.Finite.of_surjective
RingHomSurjective.ids
Module.Finite.self
trans
instOfFinite
trans πŸ“–mathematicalβ€”Algebra.QuasiFiniteβ€”Algebra.to_smulCommClass
iff_of_isArtinianRing
instIsArtinianRingFiber
baseChange
Algebra.TensorProduct.instSMulCommClassTensorProduct_1
Module.Finite.trans
TensorProduct.isScalarTower_left
IsScalarTower.right
finite_fiber
AlgEquiv.map_mul'
AlgEquiv.map_add'
IsScalarTower.to_smulCommClass'
Algebra.TensorProduct.right_isScalarTower
TensorProduct.smulCommClass_left
IsScalarTower.to_smulCommClass
IsScalarTower.left
TensorProduct.isScalarTower
Algebra.TensorProduct.cancelBaseChange_tmul
one_smul
Module.Finite.of_surjective
RingHomSurjective.ids
AlgEquiv.surjective

Algebra.QuasiFiniteAt

Theorems

NameKindAssumesProvesValidatesDepends On
baseChange πŸ“–mathematicalIdeal.comap
TensorProduct
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
CommSemiring.toSemiring
RingHom
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.TensorProduct.instSemiring
RingHom.instFunLike
AlgHom.toRingHom
Algebra.TensorProduct.instAlgebra
Algebra.TensorProduct.includeRight
RingHom.instRingHomClass
Algebra.QuasiFiniteAt
Algebra.TensorProduct.instCommRing
Algebra.TensorProduct.leftAlgebra
Algebra.id
Algebra.to_smulCommClass
β€”RingHom.instRingHomClass
IsScalarTower.right
Algebra.to_smulCommClass
OreLocalization.instIsScalarTower
TensorProduct.isScalarTower_left
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
IsScalarTower.algebraMap_apply
Localization.localRingHom_to_map
AlgHom.commutes
Commute.all
Algebra.TensorProduct.ext
Algebra.ext_id
IsScalarTower.to_smulCommClass
AlgHom.ext
map_one
MonoidHomClass.toOneHomClass
one_mul
DFunLike.congr_fun
Algebra.QuasiFinite.of_forall_exists_mul_mem_range
Algebra.QuasiFinite.baseChange
Localization.isLocalization
IsLocalization.exists_mk'_eq
IsLocalization.map_units
comap_algEquiv πŸ“–mathematicalβ€”Algebra.QuasiFiniteAt
Ideal.comap
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
RingEquiv.toRingHom
AlgEquiv.toRingEquiv
RingHom.instRingHomClass
Ideal.IsPrime.comap
β€”of_surjectiveOnStalks
RingHom.surjectiveOnStalks_of_surjective
AlgEquiv.surjective
RingHom.instRingHomClass
Ideal.IsPrime.comap
Ideal.ext
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
AlgEquiv.apply_symm_apply
eq_of_le_of_under_eq πŸ“–β€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.under
β€”β€”IsLocalization.isPrime_of_isPrime_disjoint
Localization.isLocalization
Localization.AtPrime.isLocalRing
Algebra.QuasiFinite.eq_of_le_of_under_eq
Ideal.IsMaximal.isPrime'
IsLocalRing.maximalIdeal.isMaximal
IsLocalRing.le_maximalIdeal_of_isPrime
Ideal.under_under
OreLocalization.instIsScalarTower
IsScalarTower.right
RingHom.instRingHomClass
Ideal.under_def
IsLocalization.comap_map_of_isPrime_disjoint
Localization.AtPrime.comap_maximalIdeal
exists_basicOpen_eq_singleton πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
SetLike.coe
TopologicalSpace.Opens
PrimeSpectrum
PrimeSpectrum.zariskiTopology
TopologicalSpace.Opens.instSetLike
PrimeSpectrum.basicOpen
Set
Set.instSingletonSet
β€”IsScalarTower.right
IsLocalizedModule.map_units
instIsLocalizedModuleLinearMapOfIsLocalization
Localization.isLocalization
one_smul
Submonoid.one_mem
Module.Finite.of_quasiFinite
Module.Finite.of_restrictScalars_finite
OreLocalization.instIsScalarTower
IsArtinianRing.of_finite
Algebra.EssFiniteType.isNoetherianRing
instIsNoetherianRingOfIsArtinianRing
Module.finitePresentation_of_finite
IsLocalizedModule.exists_isLocalizedModule_powers_of_finitePresentation
Module.Finite.self
isLocalizedModule_iff_isLocalization'
subset_antisymm
Set.instAntisymmSubset
Eq.ge
PrimeSpectrum.localization_away_comap_range
OrderIso.surjective
Localization.AtPrime.isLocalRing
PrimeSpectrum.ext
RingHom.instRingHomClass
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
Ideal.comap_comap
AlgHom.algHomClass
AlgEquiv.toAlgHom_toRingHom
AlgHom.comp_algebraMap
IsLocalization.AtPrime.comap_maximalIdeal
IsLocalization.AtPrime.isLocalRing
Unique.instSubsingleton
PrimeSpectrum.instKrullDimLEOfNatNat
Set.singleton_subset_iff
isClopen_singleton πŸ“–mathematicalβ€”IsClopen
PrimeSpectrum
CommRing.toCommSemiring
PrimeSpectrum.zariskiTopology
Set
Set.instSingletonSet
β€”PrimeSpectrum.isPrime
isJacobsonRing_of_finiteType
instIsJacobsonRingOfKrullDimLEOfNatNat
PrimeSpectrum.instKrullDimLEOfNatNat
Algebra.FiniteType.isNoetherianRing
instIsNoetherianRingOfIsArtinianRing
List.TFAE.out
PrimeSpectrum.isOpen_singleton_tfae_of_isNoetherian_of_isJacobsonRing
exists_basicOpen_eq_singleton
Algebra.EssFiniteType.of_finiteType
TopologicalSpace.Opens.isOpen
of_isOpen_singleton πŸ“–mathematicalIsOpen
PrimeSpectrum
CommRing.toCommSemiring
PrimeSpectrum.zariskiTopology
Set
Set.instSingletonSet
Algebra.QuasiFiniteAt
PrimeSpectrum.asIdeal
PrimeSpectrum.isPrime
β€”Algebra.FiniteType.isNoetherianRing
instIsNoetherianRingOfIsArtinianRing
isJacobsonRing_of_finiteType
instIsJacobsonRingOfKrullDimLEOfNatNat
PrimeSpectrum.instKrullDimLEOfNatNat
PrimeSpectrum.isPrime
PrimeSpectrum.isClopen_iff
List.TFAE.out
PrimeSpectrum.isOpen_singleton_tfae_of_isNoetherian_of_isJacobsonRing
Eq.le
OreLocalization.instIsScalarTower
IsScalarTower.right
Localization.isLocalization
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Submonoid.powers_le
IsLocalization.map_units
PrimeSpectrum.localization_away_comap_range
Function.Injective.subsingleton
Set.injective_codRestrict
PrimeSpectrum.localization_comap_injective
Unique.instSubsingleton
IsLocalization.exists_mk'_eq
Ideal.exists_le_maximal
Localization.AtPrime.isLocalRing
Ideal.IsMaximal.isPrime'
Eq.ge
Ideal.mem_span_singleton_self
RingHom.instRingHomClass
AlgHom.commutes
IsLocalization.AtPrime.isUnit_to_map_iff
IsUnit.mul_right_cancel
IsUnit.map
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
mul_assoc
IsUnit.val_inv_mul
mul_one
IsLocalization.mk'_spec
Algebra.FiniteType.of_surjective
IsLocalization.instFiniteTypeLocalizationOfFGSubtypeMemSubmonoid
Monoid.powers_fg
PrimeSpectrum.comap_injective_of_surjective
Algebra.QuasiFinite.iff_finite_comap_preimage_singleton
Set.Subsingleton.finite
Set.subsingleton_of_subsingleton
of_le πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Algebra.QuasiFiniteAtβ€”OreLocalization.instIsScalarTower
IsScalarTower.right
Localization.isLocalization
IsLocalization.map_units
Algebra.QuasiFinite.of_forall_exists_mul_mem_range
IsLocalization.exists_mk'_eq
IsScalarTower.coe_toAlgHom
IsLocalization.lift.congr_simp
IsLocalization.lift_eq
of_surjectiveOnStalks πŸ“–mathematicalRingHom.SurjectiveOnStalks
AlgHom.toRingHom
CommRing.toCommSemiring
CommSemiring.toSemiring
Ideal.comap
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.instRingHomClass
Algebra.QuasiFiniteAtβ€”RingHom.instRingHomClass
Algebra.QuasiFinite.of_surjective_algHom
AlgHomClass.toRingHomClass
AlgHom.algHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
IsScalarTower.algebraMap_apply
OreLocalization.instIsScalarTower
IsScalarTower.right
Localization.localRingHom_to_map
AlgHom.commutes
of_surjectiveOnStalks_of_liesOver πŸ“–mathematicalRingHom.SurjectiveOnStalks
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.QuasiFiniteAtβ€”of_surjectiveOnStalks
Ideal.over_def

Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
exists_not_mem_forall_mem_of_ne_of_liesOver πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”PrimeSpectrum.isPrime
PrimeSpectrum.ext
over_def
Algebra.to_smulCommClass
Algebra.QuasiFiniteAt.baseChange
Homeomorph.symm_apply_apply
Algebra.QuasiFiniteAt.exists_basicOpen_eq_singleton
instIsArtinianOfIsSemisimpleModuleOfFinite
IsSemisimpleRing.isSemisimpleModule
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
FiniteDimensional.finiteDimensional_self
Algebra.EssFiniteType.baseChange
Fiber.exists_smul_eq_one_tmul
Eq.ge
AlgHomClass.toRingHomClass
AlgHom.algHomClass
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
one_mul
Algebra.smul_def
IsPrime.mul_mem_left_iff
instIsTwoSided_1
RingHom.ker_isPrime
instIsDomain
AlgHom.commutes
IsScalarTower.algebraMap_apply
IsLocalRing.instIsScalarTowerResidueField
OreLocalization.instIsScalarTower
IsScalarTower.right
mul_one
PrimeSpectrum.preimageEquivFiber_apply_asIdeal
Homeomorph.injective
Eq.le
PrimeSpectrum.basicOpen_eq_zeroLocus_compl

Ideal.Fiber

Theorems

NameKindAssumesProvesValidatesDepends On
lift_residueField_surjective πŸ“–mathematicalβ€”TensorProduct
CommRing.toCommSemiring
Ideal.ResidueField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsLocalRing.ResidueField.field
Localization.AtPrime
OreLocalization.instCommRing
Ideal.primeCompl
CommSemiring.toSemiring
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
Algebra.toModule
IsLocalRing.ResidueField.algebra
OreLocalization.instAlgebra
Algebra.id
DFunLike.coe
AlgHom
Semifield.toCommSemiring
Algebra.TensorProduct.instSemiring
Algebra.TensorProduct.leftAlgebra
IsScalarTower.to_smulCommClass
IsScalarTower.right
IsLocalRing.ResidueField
IsLocalRing.ResidueField.instAlgebra
Localization.AtPrime.instAlgebraOfLiesOver
instIsLocalHomAtPrimeRingHomAlgebraMap
AlgHom.funLike
Algebra.TensorProduct.lift
IsLocalRing.ResidueField.instIsScalarTower
Localization.AtPrime.instIsScalarTower
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.ofId
IsScalarTower.toAlgHom
IsLocalRing.instIsScalarTowerResidueField
OreLocalization.instIsScalarTower
CommMonoid.toMonoid
Monoid.toMulAction
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Algebra.toSMul
Commute.all
NonUnitalNonAssocCommSemiring.toCommMagma
NonUnitalNonAssocCommRing.toNonUnitalNonAssocCommSemiring
IsLocalRing.instCommRingResidueField
β€”RingHom.instRingHomClass
OrderIso.symm_apply_apply
Algebra.to_smulCommClass
PrimeSpectrum.isPrime
Algebra.QuasiFiniteAt.baseChange
PrimeSpectrum.isClosed_singleton_iff_isMaximal
IsClopen.isClosed
Algebra.QuasiFiniteAt.isClopen_singleton
instIsArtinianOfIsSemisimpleModuleOfFinite
IsSemisimpleRing.isSemisimpleModule
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
FiniteDimensional.finiteDimensional_self
Algebra.FiniteType.baseChange
Function.Surjective.of_comp_left
IsScalarTower.to_smulCommClass
IsScalarTower.right
instIsLocalHomAtPrimeRingHomAlgebraMap
IsLocalRing.ResidueField.instIsScalarTower
Localization.AtPrime.instIsScalarTower
IsScalarTower.left
IsLocalRing.instIsScalarTowerResidueField
OreLocalization.instIsScalarTower
Commute.all
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.coe_toRingHom
RingHom.coe_comp
Ideal.IsMaximal.isPrime'
Algebra.TensorProduct.ringHom_ext
Ideal.ResidueField.ringHom_ext
RingHom.ext
AlgHom.map_algebraMap
IsScalarTower.algebraMap_apply
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
mul_one
Ideal.ResidueField.map_algebraMap
AlgHom.commutes
one_mul
Ideal.algebraMap_residueField_surjective
RingHom.SurjectiveOnStalks.residueFieldMap_bijective
RingHom.SurjectiveOnStalks.baseChange'
Ideal.surjectiveOnStalks_residueField

Module.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
of_quasiFinite πŸ“–mathematicalβ€”Module.Finite
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
β€”PrimeSpectrum.isPrime
Pi.isScalarTower
OreLocalization.instIsScalarTower
IsScalarTower.right
PrimeSpectrum.discreteTopology_iff_toPiLocalization_bijective
PrimeSpectrum.instDiscreteTopology
IsArtinianRing.instFinitePrimeSpectrum
IsScalarTower.to_smulCommClass
IsScalarTower.left
of_surjective
RingHomSurjective.ids
self
IsArtinianRing.localization_surjective
Localization.isLocalization
Algebra.to_smulCommClass
Algebra.QuasiFinite.baseChange
IsArtinianRing.instLocalization
Localization.AtPrime.isLocalRing
trans
TensorProduct.isScalarTower_left
pi
AlgEquiv.surjective

---

← Back to Index