📁 Source: Mathlib/RingTheory/QuasiFinite/Polynomial.lean
map_under_lt_comap_of_quasiFiniteAt
map_under_lt_comap_of_weaklyQuasiFiniteAt
not_ker_le_map_C_of_surjective_of_quasiFiniteAt
not_ker_le_map_C_of_surjective_of_weaklyQuasiFiniteAt
not_quasiFiniteAt
not_weaklyQuasiFiniteAt
Ideal
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semiring
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.map
RingHom
RingHom.instFunLike
C
Ideal.under
Ideal.comap
RingHomClass.toRingHom
AlgHom
algebraOfAlgebra
Algebra.id
AlgHom.funLike
AlgHomClass.toRingHomClass
AlgHom.algHomClass
RingHom.instRingHomClass
Algebra.WeaklyQuasiFiniteAt.instOfQuasiFiniteAt
lt_of_le_of_ne
Ideal.map_le_iff_le_comap
Ideal.comap_comap
algebraMap_eq
AlgHom.comp_algebraMap
le_refl
Ideal.IsPrime.under
Ideal.over_under
instIsLocalHomAtPrimeRingHomAlgebraMap
Algebra.WeaklyQuasiFiniteAt.finite_residueField
Ideal.under_liesOver_of_liesOver
IsScalarTower.of_algHom
Module.Finite.of_injective
isNoetherian_of_isNoetherianRing_of_finite
instIsNoetherianRingOfIsArtinianRing
instIsArtinianOfIsSemisimpleModuleOfFinite
IsSemisimpleRing.isSemisimpleModule
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
IsLocalRing.ResidueField.finite_of_module_finite
Algebra.IsIntegral.isLocalHom
IsPurelyInseparable.isIntegral
isPurelyInseparable_self
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.self
IsLocalRing.toNontrivial
Localization.AtPrime.isLocalRing
Module.Finite.self
IsLocalRing.ResidueField.instIsScalarTower_1
Localization.AtPrime.instIsScalarTower_1
RingHom.injective
DivisionRing.isSimpleRing
Field.instIsLocalRing
instIsDomain
Module.Finite.of_surjective
RingHomSurjective.ids
AlgEquiv.surjective
RatFunc.transcendental_X
IsIntegral.isAlgebraic
Algebra.IsIntegral.isIntegral
Algebra.IsAlgebraic.isIntegral
Algebra.IsAlgebraic.of_finite
DFunLike.coe
Preorder.toLE
RingHom.ker
le_bot_iff
coeff_map
Algebra.to_smulCommClass
Ideal.instIsTwoSided_1
Ideal.instIsTwoSidedBot
PrimeSpectrum.isPrime
PrimeSpectrum.ext
Ideal.over_def
Equiv.surjective
Algebra.WeaklyQuasiFiniteAt.baseChange
IsScalarTower.right
Ideal.IsPrime.comap
Algebra.WeaklyQuasiFiniteAt.comap_algEquiv
Algebra.QuasiFiniteAt
commRing
Algebra.WeaklyQuasiFiniteAt
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
FiniteDimensional.finiteDimensional_self
Module.Projective.of_free
Module.free_of_finite_type_torsion_free'
instIsPrincipalIdealRingOfIsSemisimpleRing
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Algebra.WeaklyQuasiFiniteAt.finite_locoalization
OreLocalization.instIsScalarTower
IsLocalization.injective
Localization.isLocalization
Ideal.primeCompl_le_nonZeroDivisors
instNoZeroDivisors
IsDomain.to_noZeroDivisors
transcendental_X
Field.toIsField
---
← Back to Index