Documentation Verification Report

Radical

πŸ“ Source: Mathlib/RingTheory/Radical.lean

Statistics

MetricCount
DefinitionsdivRadical, primeFactors, radical
3
TheoremsprimeFactors_eq, divRadical_dvd_self, divRadical_isUnit, divRadical_mul, divRadical_mul_radical, divRadical_ne_zero, eq_divRadical, radical_mul_divRadical, divRadical, dvd_radical, one_lt_radical_iff, radical_le_one_iff, radical_le_self_iff, radical_pos, two_le_radical_iff, radical_neg, radical_neg_one, disjoint_primeFactors, dvd_radical_iff, dvd_radical_iff_of_irreducible, isRadical_radical, mem_primeFactors, normalizedFactors_nodup, pairwise_primeFactors_isRelPrime, primeFactors_eq_empty_iff, primeFactors_eq_natPrimeFactors, primeFactors_mul_eq_disjUnion, primeFactors_mul_eq_union, primeFactors_of_isUnit, primeFactors_one, primeFactors_pow, primeFactors_pow', primeFactors_radical, primeFactors_val_eq_normalizedFactors, primeFactors_zero, radical_associated, radical_dvd_iff_primeFactors_subset, radical_dvd_radical, radical_dvd_radical_iff_normalizedFactors_subset_normalizedFactors, radical_dvd_radical_iff_primeFactors_subset_primeFactors, radical_dvd_self, radical_eq_iff_primeFactors_eq, radical_eq_of_associated, radical_eq_of_primeFactors_eq, radical_eq_one_iff, radical_mul, radical_mul_dvd, radical_mul_of_isUnit_left, radical_mul_of_isUnit_right, radical_ne_zero, radical_of_isUnit, radical_of_prime, radical_one, radical_pow, radical_pow_of_prime, radical_prod, radical_prod_dvd, radical_radical, radical_zero, squarefree_radical
60
Total63

Associated

Theorems

NameKindAssumesProvesValidatesDepends On
primeFactors_eq πŸ“–mathematicalAssociated
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
UniqueFactorizationMonoid.primeFactorsβ€”normalizedFactors_eq

EuclideanDomain

Definitions

NameCategoryTheorems
divRadical πŸ“–CompOp
10 mathmath: divRadical_dvd_self, divRadical_mul, radical_mul_divRadical, divRadical_dvd_derivative, eq_divRadical, IsCoprime.divRadical, divRadical_dvd_wronskian_right, divRadical_isUnit, divRadical_dvd_wronskian_left, divRadical_mul_radical

Theorems

NameKindAssumesProvesValidatesDepends On
divRadical_dvd_self πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
divRadical
β€”divRadical_mul_radical
divRadical_isUnit πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
toCommRing
divRadicalβ€”divRadical.eq_1
UniqueFactorizationMonoid.radical_of_isUnit
div_one
divRadical_mul πŸ“–mathematicalIsCoprime
CommRing.toCommSemiring
toCommRing
divRadical
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”eq_divRadical
UniqueFactorizationMonoid.radical_mul
IsCoprime.isRelPrime
mul_mul_mul_comm
radical_mul_divRadical
divRadical_mul_radical πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toCommRing
divRadical
UniqueFactorizationMonoid.radical
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
β€”mul_comm
radical_mul_divRadical
divRadical_ne_zero πŸ“–β€”β€”β€”β€”right_ne_zero_of_mul
radical_mul_divRadical
eq_divRadical πŸ“–mathematicalDistrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toCommRing
UniqueFactorizationMonoid.radical
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
divRadicalβ€”eq_div_of_mul_eq_left
UniqueFactorizationMonoid.radical_ne_zero
toNontrivial
mul_comm
radical_mul_divRadical πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toCommRing
UniqueFactorizationMonoid.radical
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
divRadical
β€”divRadical.eq_1
mul_div_assoc
UniqueFactorizationMonoid.radical_dvd_self
mul_div_cancel_leftβ‚€
toMulDivCancelClass
UniqueFactorizationMonoid.radical_ne_zero
toNontrivial

IsCoprime

Theorems

NameKindAssumesProvesValidatesDepends On
divRadical πŸ“–mathematicalIsCoprime
CommRing.toCommSemiring
EuclideanDomain.toCommRing
EuclideanDomain.divRadicalβ€”of_mul_right_right
of_mul_left_right
EuclideanDomain.radical_mul_divRadical

IsRadical

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_radical πŸ“–mathematicalIsRadical
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
Monoid.toNatPow
MonoidWithZero.toMonoid
UniqueFactorizationMonoid.radicalβ€”Associated.dvd'
UniqueFactorizationMonoid.radical_associated

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
one_lt_radical_iff πŸ“–mathematicalβ€”UniqueFactorizationMonoid.radical
instCommMonoidWithZero
NormalizationMonoid.ofUniqueUnits
Unique.instSubsingleton
Units
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
unique_units
instUniqueFactorizationMonoid
β€”two_le_radical_iff
radical_le_one_iff πŸ“–mathematicalβ€”UniqueFactorizationMonoid.radical
instCommMonoidWithZero
NormalizationMonoid.ofUniqueUnits
Unique.instSubsingleton
Units
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
unique_units
instUniqueFactorizationMonoid
β€”Unique.instSubsingleton
instUniqueFactorizationMonoid
Iff.not
one_lt_radical_iff
radical_le_self_iff πŸ“–mathematicalβ€”UniqueFactorizationMonoid.radical
instCommMonoidWithZero
NormalizationMonoid.ofUniqueUnits
Unique.instSubsingleton
Units
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
unique_units
instUniqueFactorizationMonoid
β€”Unique.instSubsingleton
instUniqueFactorizationMonoid
UniqueFactorizationMonoid.radical_zero
instCanonicallyOrderedAdd
UniqueFactorizationMonoid.radical_dvd_self
radical_pos πŸ“–mathematicalβ€”UniqueFactorizationMonoid.radical
instCommMonoidWithZero
NormalizationMonoid.ofUniqueUnits
Unique.instSubsingleton
Units
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
unique_units
instUniqueFactorizationMonoid
β€”pos_of_ne_zero
instCanonicallyOrderedAdd
Unique.instSubsingleton
instUniqueFactorizationMonoid
UniqueFactorizationMonoid.radical_ne_zero
instNontrivial
two_le_radical_iff πŸ“–mathematicalβ€”UniqueFactorizationMonoid.radical
instCommMonoidWithZero
NormalizationMonoid.ofUniqueUnits
Unique.instSubsingleton
Units
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
unique_units
instUniqueFactorizationMonoid
β€”Unique.instSubsingleton
instUniqueFactorizationMonoid
UniqueFactorizationMonoid.radical_zero
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instZeroLEOneClass
instCharZero
instAtLeastTwoHAddOfNat
instCanonicallyOrderedAdd
UniqueFactorizationMonoid.radical_one
covariant_swap_add_of_covariant_add
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
exists_prime_and_dvd
Prime.two_le
UniqueFactorizationMonoid.radical_ne_zero
instNontrivial
UniqueFactorizationMonoid.dvd_radical_iff_of_irreducible
Prime.irreducible
instIsCancelMulZero
Prime.prime

UniqueFactorizationDomain

Theorems

NameKindAssumesProvesValidatesDepends On
radical_neg πŸ“–mathematicalβ€”UniqueFactorizationMonoid.radical
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
β€”UniqueFactorizationMonoid.radical_eq_of_associated
Associated.neg_left
Associated.rfl
radical_neg_one πŸ“–mathematicalβ€”UniqueFactorizationMonoid.radical
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”radical_neg
UniqueFactorizationMonoid.radical_one

UniqueFactorizationMonoid

Definitions

NameCategoryTheorems
primeFactors πŸ“–CompOp
18 mathmath: primeFactors_zero, primeFactors_pow', primeFactors_one, primeFactors_mul_eq_union, primeFactors_mul_eq_disjUnion, primeFactors_pow, radical_dvd_radical_iff_primeFactors_subset_primeFactors, mem_primeFactors, primeFactors_radical, pairwise_primeFactors_isRelPrime, primeFactors_eq_natPrimeFactors, primeFactors_eq_empty_iff, radical_eq_iff_primeFactors_eq, primeFactors_val_eq_normalizedFactors, radical_dvd_iff_primeFactors_subset, disjoint_primeFactors, primeFactors_of_isUnit, Associated.primeFactors_eq
radical πŸ“–CompOp
41 mathmath: dvd_radical_iff, squarefree_radical, radical_prod, Polynomial.abc, isRadical_radical, Nat.two_le_radical_iff, EuclideanDomain.radical_mul_divRadical, Nat.radical_pos, radical_eq_of_associated, radical_of_prime, radical_associated, radical_radical, radical_dvd_radical_iff_primeFactors_subset_primeFactors, Nat.radical_le_self_iff, radical_one, radical_mul_of_isUnit_right, natDegree_radical_le, dvd_radical_iff_of_irreducible, radical_prod_dvd, radical_zero, radical_pow, radical_dvd_self, primeFactors_radical, radical_of_isUnit, IsRadical.dvd_radical, UniqueFactorizationDomain.radical_neg_one, radical_eq_iff_primeFactors_eq, radical_dvd_iff_primeFactors_subset, Nat.one_lt_radical_iff, radical_mul_dvd, radical_mul_of_isUnit_left, radical_pow_of_prime, radical_eq_of_primeFactors_eq, radical_dvd_radical, Nat.radical_le_one_iff, EuclideanDomain.divRadical_mul_radical, radical_eq_one_iff, radical_mul, radical_dvd_radical_iff_normalizedFactors_subset_normalizedFactors, UniqueFactorizationDomain.radical_neg, degree_radical_le

Theorems

NameKindAssumesProvesValidatesDepends On
disjoint_primeFactors πŸ“–mathematicalIsRelPrime
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Disjoint
Finset
Finset.partialOrder
Finset.instOrderBot
primeFactors
β€”Multiset.disjoint_toFinset
disjoint_normalizedFactors
dvd_radical_iff πŸ“–mathematicalIsRadical
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
Monoid.toNatPow
MonoidWithZero.toMonoid
radicalβ€”Dvd.dvd.trans
radical_dvd_self
eq_or_ne
IsRadical.dvd_radical
radical_dvd_radical
dvd_radical_iff_of_irreducible πŸ“–mathematicalIrreducible
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
radical
β€”Dvd.dvd.trans
radical_dvd_self
exists_mem_normalizedFactors_of_dvd
Associated.dvd
Finset.dvd_prod_of_mem
isRadical_radical πŸ“–mathematicalβ€”IsRadical
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
Monoid.toNatPow
MonoidWithZero.toMonoid
radical
β€”radical.eq_1
Finset.prod_dvd_of_isRelPrime
instDecompositionMonoid
pairwise_primeFactors_isRelPrime
dvd_radical_iff_of_irreducible
irreducible_of_normalized_factor
normalizedFactors_zero
dvd_of_mem_normalizedFactors
Prime.isRadical
prime_of_normalized_factor
Dvd.dvd.trans
mem_primeFactors πŸ“–mathematicalβ€”Finset
Finset.instMembership
primeFactors
Multiset
Multiset.instMembership
normalizedFactors
β€”β€”
normalizedFactors_nodup πŸ“–mathematicalIsRadical
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
Monoid.toNatPow
MonoidWithZero.toMonoid
Multiset.Nodup
normalizedFactors
β€”eq_or_ne
normalizedFactors_zero
squarefree_iff_nodup_normalizedFactors
isRadical_iff_squarefree_of_ne_zero
toIsCancelMulZero
instDecompositionMonoid
pairwise_primeFactors_isRelPrime πŸ“–mathematicalβ€”Set.Pairwise
SetLike.coe
Finset
Finset.instSetLike
primeFactors
IsRelPrime
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
β€”eq_or_ne
primeFactors_zero
Finset.coe_empty
Irreducible.isRelPrime_iff_not_dvd
mem_normalizedFactors_iff'
Mathlib.Tactic.Contrapose.contraposeβ‚„
Irreducible.associated_of_dvd
Associated.eq_of_normalized
toIsCancelMulZero
primeFactors_eq_empty_iff πŸ“–mathematicalβ€”primeFactors
Finset
Finset.instEmptyCollection
IsUnit
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
β€”primeFactors.eq_1
Multiset.toFinset_eq_empty
normalizedFactors_eq_zero_iff
primeFactors_eq_natPrimeFactors πŸ“–mathematicalβ€”primeFactors
Nat.instCommMonoidWithZero
NormalizationMonoid.ofUniqueUnits
Unique.instSubsingleton
Units
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Nat.unique_units
Nat.instUniqueFactorizationMonoid
Nat.primeFactors
β€”Unique.instSubsingleton
Nat.instUniqueFactorizationMonoid
primeFactors.eq_1
Nat.factors_eq
Nat.primeFactors.eq_1
Lean.Meta.FastSubsingleton.elim
Lean.Meta.instFastSubsingletonForall
Lean.Meta.instFastSubsingletonDecidable
List.toFinset_coe
primeFactors_mul_eq_disjUnion πŸ“–mathematicalIsRelPrime
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
primeFactors
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Finset.disjUnion
disjoint_primeFactors
β€”disjoint_primeFactors
eq_or_ne
primeFactors.congr_simp
MulZeroClass.zero_mul
primeFactors_zero
primeFactors_of_isUnit
isRelPrime_zero_left
Finset.disjUnion.congr_simp
Finset.empty_disjUnion
MulZeroClass.mul_zero
isRelPrime_zero_right
Finset.disjUnion_empty
Finset.disjUnion_eq_union
primeFactors_mul_eq_union
primeFactors_mul_eq_union πŸ“–mathematicalβ€”primeFactors
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
Finset
Finset.instUnion
β€”Finset.ext
normalizedFactors_mul
primeFactors_of_isUnit πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
primeFactors
Finset
Finset.instEmptyCollection
β€”primeFactors.eq_1
normalizedFactors_of_isUnit
Multiset.toFinset_zero
primeFactors_one πŸ“–mathematicalβ€”primeFactors
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
Finset
Finset.instEmptyCollection
β€”normalizedFactors_one
primeFactors_pow πŸ“–mathematicalβ€”primeFactors
Monoid.toNatPow
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
β€”normalizedFactors_pow
Multiset.toFinset_nsmul
primeFactors_pow' πŸ“–mathematicalβ€”primeFactors
Monoid.toNatPow
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
β€”primeFactors_pow
primeFactors_radical πŸ“–mathematicalβ€”primeFactors
radical
β€”eq_or_ne
normalizedFactors.congr_simp
radical_zero
normalizedFactors_one
normalizedFactors_zero
Finset.ext
primeFactors_val_eq_normalizedFactors πŸ“–mathematicalIsRadical
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
Monoid.toNatPow
MonoidWithZero.toMonoid
Finset.val
primeFactors
normalizedFactors
β€”primeFactors.eq_1
Multiset.toFinset_val
Multiset.dedup_eq_self
normalizedFactors_nodup
primeFactors_zero πŸ“–mathematicalβ€”primeFactors
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
Finset
Finset.instEmptyCollection
β€”normalizedFactors_zero
radical_associated πŸ“–mathematicalIsRadical
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
Monoid.toNatPow
MonoidWithZero.toMonoid
Associated
radical
β€”radical.eq_1
Finset.prod_val
primeFactors_val_eq_normalizedFactors
prod_normalizedFactors
radical_dvd_iff_primeFactors_subset πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
radical
Finset
Finset.instHasSubset
primeFactors
β€”dvd_radical_iff
isRadical_radical
radical_dvd_radical_iff_primeFactors_subset_primeFactors
radical_dvd_radical πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
radicalβ€”eq_or_ne
radical_zero
radical_dvd_radical_iff_normalizedFactors_subset_normalizedFactors
Multiset.subset_of_le
dvd_iff_normalizedFactors_le_normalizedFactors
radical_dvd_radical_iff_normalizedFactors_subset_normalizedFactors πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
radical
Multiset
Multiset.instHasSubset
normalizedFactors
β€”eq_or_ne
radical_zero
normalizedFactors_zero
dvd_iff_normalizedFactors_le_normalizedFactors
radical_ne_zero
Multiset.le_iff_subset
normalizedFactors_nodup
isRadical_radical
primeFactors_radical
radical_dvd_radical_iff_primeFactors_subset_primeFactors πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
radical
Finset
Finset.instHasSubset
primeFactors
β€”radical_dvd_radical_iff_normalizedFactors_subset_normalizedFactors
primeFactors.eq_1
Multiset.toFinset_subset
radical_dvd_self πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
radical
β€”dvd_zero
radical.eq_1
Finset.prod_val
Associated.dvd_iff_dvd_right
prod_normalizedFactors
Multiset.prod_dvd_prod_of_le
primeFactors.eq_1
Multiset.toFinset_val
Multiset.dedup_le
radical_eq_iff_primeFactors_eq πŸ“–mathematicalβ€”radical
primeFactors
β€”primeFactors_radical
Finset.prod_congr
radical_eq_of_associated πŸ“–mathematicalAssociated
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
radicalβ€”radical.eq_1
Associated.primeFactors_eq
radical_eq_of_primeFactors_eq πŸ“–mathematicalprimeFactorsradicalβ€”radical_eq_iff_primeFactors_eq
radical_eq_one_iff πŸ“–mathematicalβ€”radical
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
IsUnit
MonoidWithZero.toMonoid
β€”primeFactors_radical
primeFactors_one
primeFactors_eq_empty_iff
radical.congr_simp
radical_zero
radical_of_isUnit
radical_mul πŸ“–mathematicalIsRelPrime
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
radical
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”disjoint_primeFactors
primeFactors_mul_eq_disjUnion
Finset.prod_disjUnion
radical_mul_dvd πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
radical
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”eq_or_ne
radical.congr_simp
MulZeroClass.zero_mul
radical_zero
one_mul
MulZeroClass.mul_zero
mul_one
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Unique.instSubsingleton
IsRightCancelMulZero.to_noZeroDivisors
IsCancelMulZero.toIsRightCancelMulZero
toIsCancelMulZero
primeFactors_mul_eq_union
primeFactors_radical
Finset.instReflSubset
radical_mul_of_isUnit_left πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
radical
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”radical_eq_of_associated
associated_unit_mul_left
radical_mul_of_isUnit_right πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
radical
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”radical_eq_of_associated
associated_mul_unit_left
radical_ne_zero πŸ“–β€”β€”β€”β€”radical.eq_1
Finset.prod_val
Multiset.prod_ne_zero
IsRightCancelMulZero.to_noZeroDivisors
IsCancelMulZero.toIsRightCancelMulZero
toIsCancelMulZero
primeFactors.eq_1
zero_notMem_normalizedFactors
radical_of_isUnit πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
radical
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
β€”radical_eq_of_associated
associated_one_iff_isUnit
radical_one
radical_of_prime πŸ“–mathematicalPrimeradical
DFunLike.coe
MonoidWithZeroHom
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
MonoidWithZeroHom.funLike
normalize
β€”radical.eq_1
primeFactors.eq_1
normalizedFactors_irreducible
Prime.irreducible
toIsCancelMulZero
Finset.prod_congr
Multiset.toFinset_singleton
Finset.prod_singleton
radical_one πŸ“–mathematicalβ€”radical
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
β€”Finset.prod_congr
primeFactors_one
radical_pow πŸ“–mathematicalβ€”radical
Monoid.toNatPow
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
β€”Finset.prod_congr
primeFactors_pow
radical_pow_of_prime πŸ“–mathematicalPrimeradical
Monoid.toNatPow
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
DFunLike.coe
MonoidWithZeroHom
MonoidWithZero.toMulZeroOneClass
MonoidWithZeroHom.funLike
normalize
β€”radical_pow
radical_of_prime
radical_prod πŸ“–mathematicalSet.Pairwise
SetLike.coe
Finset
Finset.instSetLike
Function.onFun
IsRelPrime
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
radical
Finset.prod
CommMonoidWithZero.toCommMonoid
β€”Finset.cons_induction
radical_one
radical.congr_simp
Finset.prod_cons
radical_mul
IsRelPrime.prod_right
instDecompositionMonoid
Set.pairwise_insert_of_symmetric_of_notMem
Symmetric.comap
symmetric_isRelPrime
Finset.coe_cons
radical_prod_dvd πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
radical
Finset.prod
CommMonoidWithZero.toCommMonoid
β€”Finset.cons_induction
radical_one
radical.congr_simp
Finset.prod_cons
Dvd.dvd.trans
radical_mul_dvd
mul_dvd_mul_left
radical_radical πŸ“–mathematicalβ€”radicalβ€”radical_eq_iff_primeFactors_eq
primeFactors_radical
radical_zero πŸ“–mathematicalβ€”radical
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
β€”Finset.prod_congr
primeFactors_zero
squarefree_radical πŸ“–mathematicalβ€”Squarefree
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
radical
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Unique.instSubsingleton
IsRadical.squarefree
toIsCancelMulZero
isRadical_radical

---

← Back to Index