Documentation Verification Report

RegularSequence

πŸ“ Source: Mathlib/RingTheory/Regular/RegularSequence.lean

Statistics

MetricCount
DefinitionsofList, IsRegular, ndrecIterModByRegular, ndrecIterModByRegularWithRing, recIterModByRegular, recIterModByRegularWithRing, IsWeaklyRegular, ndrecIterModByRegular, ndrecWithRing, recIterModByRegular, recIterModByRegularWithRing, quotOfListConsSMulTopEquivQuotSMulTopInner, quotOfListConsSMulTopEquivQuotSMulTopOuter
13
TheoremsisRegular_congr, isWeaklyRegular_congr, map_ofList, ofList_append, ofList_cons, ofList_cons_smul, ofList_nil, ofList_singleton, isRegular_iff_isWeaklyRegular_of_subset_maximalIdeal, isRegular_of_perm, isWeaklyRegular_of_perm_of_subset_maximalIdeal, isRegular_congr, isRegular_congr', isWeaklyRegular_congr, isWeaklyRegular_congr', cons, cons', nil, nontrivial, of_perm_of_subset_jacobson_annihilator, quot_ofList_smul_nontrivial, toIsWeaklyRegular, top_ne_smul, cons, cons', isWeaklyRegular_lTensor, isWeaklyRegular_rTensor, nil, of_perm_of_subset_jacobson_annihilator, prototype_perm, regular_mod_prev, eq_nil_of_isRegular_on_artinian, isRegular_cons_iff, isRegular_cons_iff', isRegular_iff, isRegular_iff_isWeaklyRegular_of_subset_jacobson_annihilator, isWeaklyRegular_append_iff, isWeaklyRegular_append_iff', isWeaklyRegular_cons_iff, isWeaklyRegular_cons_iff', isWeaklyRegular_iff, isWeaklyRegular_iff_Fin, isWeaklyRegular_map_algebraMap_iff, isWeaklyRegular_singleton_iff, map_first_exact_on_four_term_right_exact_of_isSMulRegular_last, quotOfListConsSMulTopEquivQuotSMulTopInner_naturality, smul_top_le_comap_smul_top, top_eq_ofList_cons_smul_iff
48
Total61

AddEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
isRegular_congr πŸ“–mathematicalβ€”RingTheory.Sequence.IsRegularβ€”IsScalarTower.left
RingTheory.Sequence.isRegular_iff
Submodule.Quotient.nontrivial_iff
AddSubgroup.normal_of_comm
AddEquivClass.instAddMonoidHomClass
instAddEquivClass
surjective
isWeaklyRegular_congr
Equiv.nontrivial_congr
isWeaklyRegular_congr πŸ“–mathematicalβ€”RingTheory.Sequence.IsWeaklyRegularβ€”IsScalarTower.left
RingTheory.Sequence.isWeaklyRegular_iff_Fin
AddSubgroup.normal_of_comm
AddEquivClass.instAddMonoidHomClass
instAddEquivClass
surjective
List.forallβ‚‚_take
Equiv.forall_congr
List.Forallβ‚‚.length_eq
Equiv.isSMulRegular_congr
Function.Surjective.forall
Submodule.mkQ_surjective
List.Forallβ‚‚.get

Ideal

Definitions

NameCategoryTheorems
ofList πŸ“–CompOp
17 mathmath: map_ofList, Submodule.top_eq_ofList_cons_smul_iff, Module.supportDim_add_length_eq_supportDim_of_isRegular, RingTheory.Sequence.isWeaklyRegular_iff_Fin, RingTheory.Sequence.IsWeaklyRegular.regular_mod_prev, Submodule.quotOfListConsSMulTopEquivQuotSMulTopInner_naturality, RingTheory.Sequence.isWeaklyRegular_append_iff', ringKrullDim_add_length_eq_ringKrullDim_of_isRegular, RingTheory.Sequence.isWeaklyRegular_append_iff, ofList_append, ofList_nil, RingTheory.Sequence.IsRegular.quot_ofList_smul_nontrivial, ofList_cons_smul, ofList_singleton, ofList_cons, RingTheory.Sequence.map_first_exact_on_four_term_right_exact_of_isSMulRegular_last, RingTheory.Sequence.isWeaklyRegular_iff

Theorems

NameKindAssumesProvesValidatesDepends On
map_ofList πŸ“–mathematicalβ€”map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
ofList
DFunLike.coe
β€”map_span
RingHom.instRingHomClass
Set.ext
ofList_append πŸ“–mathematicalβ€”ofList
Ideal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”Set.ext
span_union
ofList_cons πŸ“–mathematicalβ€”ofList
Ideal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
span
Set
Set.instSingletonSet
β€”ofList_append
ofList_singleton
ofList_cons_smul πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
Submodule
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
ofList
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Submodule.pointwiseAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Submodule.pointwiseDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
CommMonoid.toMonoid
β€”IsScalarTower.left
smulCommClass_self
ofList_cons
Submodule.sup_smul
Submodule.ideal_span_singleton_smul
ofList_nil πŸ“–mathematicalβ€”ofList
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”Set.eq_empty_of_forall_notMem
span_empty
ofList_singleton πŸ“–mathematicalβ€”ofList
span
Set
Set.instSingletonSet
β€”Set.ext

IsLocalRing

Theorems

NameKindAssumesProvesValidatesDepends On
isRegular_iff_isWeaklyRegular_of_subset_maximalIdeal πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
maximalIdeal
RingTheory.Sequence.IsRegular
RingTheory.Sequence.IsWeaklyRegular
β€”bot_ne_top
Submodule.instNontrivial
Submodule.annihilator_eq_top_iff
Submodule.annihilator_top
RingTheory.Sequence.isRegular_iff_isWeaklyRegular_of_subset_jacobson_annihilator
jacobson_eq_maximalIdeal
isRegular_of_perm πŸ“–β€”RingTheory.Sequence.IsRegularβ€”β€”IsScalarTower.left
isWeaklyRegular_of_perm_of_subset_maximalIdeal
le_maximalIdeal
Submodule.top_smul
Ideal.subset_span
ne_of_ne_of_eq
Set.ext
isWeaklyRegular_of_perm_of_subset_maximalIdeal πŸ“–β€”RingTheory.Sequence.IsWeaklyRegular
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
maximalIdeal
β€”β€”RingTheory.Sequence.IsWeaklyRegular.of_perm_of_subset_jacobson_annihilator
maximalIdeal_le_jacobson

LinearEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
isRegular_congr πŸ“–mathematicalβ€”RingTheory.Sequence.IsRegularβ€”RingHomInvPair.ids
isRegular_congr'
isRegular_congr' πŸ“–mathematicalβ€”RingTheory.Sequence.IsRegular
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
β€”AddEquiv.isRegular_congr
List.forallβ‚‚_map_right_iff
List.forallβ‚‚_same
LinearMap.map_smul'
isWeaklyRegular_congr πŸ“–mathematicalβ€”RingTheory.Sequence.IsWeaklyRegularβ€”RingHomInvPair.ids
isWeaklyRegular_congr'
isWeaklyRegular_congr' πŸ“–mathematicalβ€”RingTheory.Sequence.IsWeaklyRegular
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
β€”AddEquiv.isWeaklyRegular_congr
List.forallβ‚‚_map_right_iff
List.forallβ‚‚_same
LinearMap.map_smul'

RingTheory.Sequence

Definitions

NameCategoryTheorems
IsRegular πŸ“–CompData
11 mathmath: isRegular_cons_iff, AddEquiv.isRegular_congr, LinearEquiv.isRegular_congr, isRegular_iff, IsWeaklyRegular.isRegular_of_isLocalizedModule_of_mem, IsLocalRing.isRegular_iff_isWeaklyRegular_of_subset_maximalIdeal, isRegular_iff_isWeaklyRegular_of_subset_jacobson_annihilator, LinearEquiv.isRegular_congr', IsWeaklyRegular.isRegular_of_isLocalization_of_mem, isRegular_cons_iff', IsRegular.nil
IsWeaklyRegular πŸ“–CompData
16 mathmath: isWeaklyRegular_map_algebraMap_iff, isWeaklyRegular_cons_iff', isWeaklyRegular_cons_iff, isWeaklyRegular_iff_Fin, isWeaklyRegular_singleton_iff, isWeaklyRegular_append_iff', IsWeaklyRegular.nil, isWeaklyRegular_append_iff, LinearEquiv.isWeaklyRegular_congr', isRegular_iff, IsLocalRing.isRegular_iff_isWeaklyRegular_of_subset_maximalIdeal, AddEquiv.isWeaklyRegular_congr, LinearEquiv.isWeaklyRegular_congr, isWeaklyRegular_iff, isRegular_iff_isWeaklyRegular_of_subset_jacobson_annihilator, IsRegular.toIsWeaklyRegular

Theorems

NameKindAssumesProvesValidatesDepends On
eq_nil_of_isRegular_on_artinian πŸ“–β€”IsRegularβ€”β€”smulCommClass_self
RingHomSurjective.ids
Submodule.map_top
LinearMap.range_eq_top
IsArtinian.surjective_of_injective_endomorphism
IsScalarTower.left
isWeaklyRegular_cons_iff
Submodule.ideal_span_singleton_smul
Submodule.sup_smul
Ideal.ofList_cons
lt_top_iff_ne_top
isRegular_iff
ne_of_lt
lt_of_le_of_lt
le_sup_left
isRegular_cons_iff πŸ“–mathematicalβ€”IsRegular
IsSMulRegular
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
QuotSMulTop
Submodule.Quotient.addCommGroup
CommRing.toRing
Submodule
AddCommMonoid.toAddMonoid
Submodule.pointwiseAddCommMonoid
Submodule.pointwiseDistribMulAction
Top.top
Submodule.instTop
Submodule.Quotient.module
β€”IsScalarTower.left
isRegular_iff
isWeaklyRegular_cons_iff
Submodule.Quotient.isScalarTower
Submodule.top_eq_ofList_cons_smul_iff
isRegular_cons_iff' πŸ“–mathematicalβ€”IsRegular
IsSMulRegular
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.span
Set
Set.instSingletonSet
QuotSMulTop
Ideal.Quotient.commRing
Submodule.Quotient.addCommGroup
Submodule
AddCommMonoid.toAddMonoid
Submodule.pointwiseAddCommMonoid
Submodule.pointwiseDistribMulAction
Top.top
Submodule.instTop
Module.instQuotientIdealSpanSingletonSetSubmoduleHSMulTop
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
β€”Ideal.instIsTwoSided_1
IsScalarTower.left
isRegular_iff
isWeaklyRegular_cons_iff'
Module.IsTorsionBySet.isScalarTower
Module.isTorsionBy_quotient_element_smul
Submodule.Quotient.isScalarTower
Ideal.map_ofList
Ideal.Quotient.algebraMap_eq
Ideal.smul_restrictScalars
Submodule.restrictScalars_top
Submodule.top_eq_ofList_cons_smul_iff
isRegular_iff πŸ“–mathematicalβ€”IsRegular
IsWeaklyRegular
β€”IsScalarTower.left
isRegular_iff_isWeaklyRegular_of_subset_jacobson_annihilator πŸ“–mathematicalIdeal
Ring.toSemiring
CommRing.toRing
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.jacobson
Module.annihilator
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
IsRegular
IsWeaklyRegular
β€”IsScalarTower.left
isRegular_iff
Submodule.top_ne_ideal_smul_of_le_jacobson_annihilator
Ideal.span_le
isWeaklyRegular_append_iff πŸ“–mathematicalβ€”IsWeaklyRegular
HasQuotient.Quotient
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
CommRing.toRing
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ideal.ofList
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
β€”IsScalarTower.left
IsWeaklyRegular.nil
LinearEquiv.isWeaklyRegular_congr
Ideal.ofList_nil
Submodule.bot_smul
RingHomInvPair.ids
Submodule.Quotient.isScalarTower
isWeaklyRegular_cons_iff
isWeaklyRegular_append_iff' πŸ“–mathematicalβ€”IsWeaklyRegular
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.ofList
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Top.top
Submodule.instTop
Ideal.Quotient.commRing
Submodule.Quotient.addCommGroup
Module.instQuotientIdealSubmoduleHSMulTop
Ideal.instIsTwoSided_1
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
RingHom.instFunLike
β€”IsScalarTower.left
Ideal.instIsTwoSided_1
isWeaklyRegular_append_iff
isWeaklyRegular_map_algebraMap_iff
Module.IsTorsionBySet.isScalarTower
Module.isTorsionBySet_quotient_ideal_smul
Submodule.Quotient.isScalarTower
isWeaklyRegular_cons_iff πŸ“–mathematicalβ€”IsWeaklyRegular
IsSMulRegular
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
QuotSMulTop
Submodule.Quotient.addCommGroup
CommRing.toRing
Submodule
AddCommMonoid.toAddMonoid
Submodule.pointwiseAddCommMonoid
Submodule.pointwiseDistribMulAction
Top.top
Submodule.instTop
Submodule.Quotient.module
β€”IsScalarTower.left
Ideal.ofList_nil
Submodule.bot_smul
RingHomInvPair.ids
Submodule.Quotient.isScalarTower
isWeaklyRegular_iff_Fin
Fin.forall_iff_succ
LinearEquiv.isSMulRegular_congr
isWeaklyRegular_cons_iff' πŸ“–mathematicalβ€”IsWeaklyRegular
IsSMulRegular
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.span
Set
Set.instSingletonSet
QuotSMulTop
Ideal.Quotient.commRing
Submodule.Quotient.addCommGroup
Submodule
AddCommMonoid.toAddMonoid
Submodule.pointwiseAddCommMonoid
Submodule.pointwiseDistribMulAction
Top.top
Submodule.instTop
Module.instQuotientIdealSpanSingletonSetSubmoduleHSMulTop
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
β€”Ideal.instIsTwoSided_1
isWeaklyRegular_cons_iff
isWeaklyRegular_map_algebraMap_iff
Module.IsTorsionBySet.isScalarTower
Module.isTorsionBy_quotient_element_smul
Submodule.Quotient.isScalarTower
IsScalarTower.left
isWeaklyRegular_iff πŸ“–mathematicalβ€”IsWeaklyRegular
IsSMulRegular
HasQuotient.Quotient
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
CommRing.toRing
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ideal.ofList
Top.top
Submodule.instTop
Submodule.Quotient.instSMul
β€”IsScalarTower.left
isWeaklyRegular_iff_Fin πŸ“–mathematicalβ€”IsWeaklyRegular
IsSMulRegular
HasQuotient.Quotient
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
CommRing.toRing
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ideal.ofList
Top.top
Submodule.instTop
Submodule.Quotient.instSMul
β€”IsScalarTower.left
isWeaklyRegular_iff
isWeaklyRegular_map_algebraMap_iff πŸ“–mathematicalβ€”IsWeaklyRegular
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”AddEquiv.isWeaklyRegular_congr
List.forallβ‚‚_map_left_iff
List.forallβ‚‚_same
algebraMap_smul
isWeaklyRegular_singleton_iff πŸ“–mathematicalβ€”IsWeaklyRegular
IsSMulRegular
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”isWeaklyRegular_cons_iff
IsWeaklyRegular.nil
map_first_exact_on_four_term_right_exact_of_isSMulRegular_last πŸ“–mathematicalFunction.Exact
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
IsWeaklyRegular
HasQuotient.Quotient
Submodule
Ring.toSemiring
CommRing.toRing
Submodule.hasQuotient
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ideal.ofList
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
Submodule.mapQ
Submodule.smul_top_le_comap_smul_top
Submodule.Quotient.instZeroQuotient
β€”IsScalarTower.left
Submodule.smul_top_le_comap_smul_top
Function.Exact.iff_of_ladder_linearEquiv
Ideal.ofList_nil
Submodule.bot_smul
Submodule.quot_hom_ext
RingHomCompTriple.ids
RingHomInvPair.ids
Submodule.Quotient.isScalarTower
smulCommClass_self
Submodule.Quotient.smulCommClass
Submodule.quotOfListConsSMulTopEquivQuotSMulTopInner_naturality
QuotSMulTop.map_first_exact_on_four_term_exact_of_isSMulRegular_last
QuotSMulTop.map_exact
QuotSMulTop.map_surjective

RingTheory.Sequence.IsRegular

Definitions

NameCategoryTheorems
ndrecIterModByRegular πŸ“–CompOpβ€”
ndrecIterModByRegularWithRing πŸ“–CompOpβ€”
recIterModByRegular πŸ“–CompOpβ€”
recIterModByRegularWithRing πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
cons πŸ“–β€”IsSMulRegular
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
RingTheory.Sequence.IsRegular
QuotSMulTop
Submodule.Quotient.addCommGroup
CommRing.toRing
Submodule
AddCommMonoid.toAddMonoid
Submodule.pointwiseAddCommMonoid
Submodule.pointwiseDistribMulAction
Top.top
Submodule.instTop
Submodule.Quotient.module
β€”β€”RingTheory.Sequence.isRegular_cons_iff
cons' πŸ“–β€”IsSMulRegular
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
RingTheory.Sequence.IsRegular
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.span
Set
Set.instSingletonSet
QuotSMulTop
Ideal.Quotient.commRing
Submodule.Quotient.addCommGroup
Submodule
AddCommMonoid.toAddMonoid
Submodule.pointwiseAddCommMonoid
Submodule.pointwiseDistribMulAction
Top.top
Submodule.instTop
Module.instQuotientIdealSpanSingletonSetSubmoduleHSMulTop
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
β€”β€”Ideal.instIsTwoSided_1
RingTheory.Sequence.isRegular_cons_iff'
nil πŸ“–mathematicalβ€”RingTheory.Sequence.IsRegularβ€”RingTheory.Sequence.IsWeaklyRegular.nil
IsScalarTower.left
not_subsingleton
Submodule.subsingleton_iff
subsingleton_iff_bot_eq_top
Submodule.bot_smul
Ideal.ofList_nil
nontrivial πŸ“–mathematicalRingTheory.Sequence.IsRegularNontrivialβ€”Function.Surjective.nontrivial
IsScalarTower.left
quot_ofList_smul_nontrivial
Submodule.mkQ_surjective
of_perm_of_subset_jacobson_annihilator πŸ“–β€”RingTheory.Sequence.IsRegular
Ideal
Ring.toSemiring
CommRing.toRing
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.jacobson
Module.annihilator
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”β€”RingTheory.Sequence.IsWeaklyRegular.of_perm_of_subset_jacobson_annihilator
toIsWeaklyRegular
Submodule.top_ne_ideal_smul_of_le_jacobson_annihilator
nontrivial
Module.IsNoetherian.finite
Ideal.span_le
quot_ofList_smul_nontrivial πŸ“–mathematicalRingTheory.Sequence.IsRegularNontrivial
HasQuotient.Quotient
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
CommRing.toRing
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ideal.ofList
β€”IsScalarTower.left
Submodule.Quotient.nontrivial_iff
ne_top_of_le_ne_top
top_ne_smul
smul_mono_right
Submodule.instCovariantClassHSMulLe_1
le_top
toIsWeaklyRegular πŸ“–mathematicalRingTheory.Sequence.IsRegularRingTheory.Sequence.IsWeaklyRegularβ€”β€”
top_ne_smul πŸ“–β€”RingTheory.Sequence.IsRegularβ€”β€”β€”

RingTheory.Sequence.IsWeaklyRegular

Definitions

NameCategoryTheorems
ndrecIterModByRegular πŸ“–CompOpβ€”
ndrecWithRing πŸ“–CompOpβ€”
recIterModByRegular πŸ“–CompOpβ€”
recIterModByRegularWithRing πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
cons πŸ“–β€”IsSMulRegular
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
RingTheory.Sequence.IsWeaklyRegular
QuotSMulTop
Submodule.Quotient.addCommGroup
CommRing.toRing
Submodule
AddCommMonoid.toAddMonoid
Submodule.pointwiseAddCommMonoid
Submodule.pointwiseDistribMulAction
Top.top
Submodule.instTop
Submodule.Quotient.module
β€”β€”RingTheory.Sequence.isWeaklyRegular_cons_iff
cons' πŸ“–β€”IsSMulRegular
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
RingTheory.Sequence.IsWeaklyRegular
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.span
Set
Set.instSingletonSet
QuotSMulTop
Ideal.Quotient.commRing
Submodule.Quotient.addCommGroup
Submodule
AddCommMonoid.toAddMonoid
Submodule.pointwiseAddCommMonoid
Submodule.pointwiseDistribMulAction
Top.top
Submodule.instTop
Module.instQuotientIdealSpanSingletonSetSubmoduleHSMulTop
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
β€”β€”Ideal.instIsTwoSided_1
RingTheory.Sequence.isWeaklyRegular_cons_iff'
isWeaklyRegular_lTensor πŸ“–mathematicalRingTheory.Sequence.IsWeaklyRegularTensorProduct
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
TensorProduct.addCommGroup
TensorProduct.instModule
β€”nil
RingHomInvPair.ids
cons
IsSMulRegular.lTensor
LinearEquiv.isWeaklyRegular_congr
isWeaklyRegular_rTensor πŸ“–mathematicalRingTheory.Sequence.IsWeaklyRegularTensorProduct
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
TensorProduct.addCommGroup
TensorProduct.instModule
β€”nil
RingHomInvPair.ids
cons
IsSMulRegular.rTensor
LinearEquiv.isWeaklyRegular_congr
nil πŸ“–mathematicalβ€”RingTheory.Sequence.IsWeaklyRegularβ€”IsScalarTower.left
of_perm_of_subset_jacobson_annihilator πŸ“–β€”RingTheory.Sequence.IsWeaklyRegular
Ideal
Ring.toSemiring
CommRing.toRing
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.jacobson
Module.annihilator
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”β€”prototype_perm
IsScalarTower.left
Submodule.Quotient.smulCommClass
smulCommClass_self
Submodule.eq_bot_of_eq_pointwise_smul_of_mem_jacobson_annihilator
IsNoetherian.noetherian
isNoetherian_quotient
Ideal.jacobson_mono
le_trans
LinearMap.annihilator_le_of_surjective
Submodule.mkQ_surjective
LinearMap.annihilator_le_of_injective
Submodule.injective_subtype
prototype_perm πŸ“–β€”RingTheory.Sequence.IsWeaklyRegular
Submodule.torsionBy
HasQuotient.Quotient
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
CommRing.toRing
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ideal.ofList
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
Bot.bot
Submodule.instBot
β€”β€”IsScalarTower.left
Submodule.Quotient.smulCommClass
smulCommClass_self
LinearEquiv.isWeaklyRegular_congr
Ideal.ofList_nil
Submodule.bot_smul
regular_mod_prev πŸ“–mathematicalRingTheory.Sequence.IsWeaklyRegularIsSMulRegular
HasQuotient.Quotient
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
CommRing.toRing
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ideal.ofList
Top.top
Submodule.instTop
Submodule.Quotient.instSMul
β€”β€”

Submodule

Definitions

NameCategoryTheorems
quotOfListConsSMulTopEquivQuotSMulTopInner πŸ“–CompOp
1 mathmath: quotOfListConsSMulTopEquivQuotSMulTopInner_naturality
quotOfListConsSMulTopEquivQuotSMulTopOuter πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
quotOfListConsSMulTopEquivQuotSMulTopInner_naturality πŸ“–mathematicalβ€”LinearMap.comp
HasQuotient.Quotient
Submodule
Ring.toSemiring
CommRing.toRing
AddCommGroup.toAddCommMonoid
hasQuotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ideal.ofList
Top.top
instTop
QuotSMulTop
Quotient.addCommGroup
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
pointwiseAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
pointwiseDistribMulAction
Quotient.module
Quotient.isScalarTower
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
instDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
RingHom.id
RingHomCompTriple.ids
LinearEquiv.toLinearMap
RingHomInvPair.ids
quotOfListConsSMulTopEquivQuotSMulTopInner
mapQ
smul_top_le_comap_smul_top
DFunLike.coe
LinearMap
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommRing.toCommMonoid
CommMonoid.toMonoid
Quotient.smulCommClass
LinearMap.instFunLike
QuotSMulTop.map
β€”quot_hom_ext
IsScalarTower.left
Quotient.isScalarTower
RingHomCompTriple.ids
RingHomInvPair.ids
smul_top_le_comap_smul_top
smulCommClass_self
Quotient.smulCommClass
smul_top_le_comap_smul_top πŸ“–mathematicalβ€”Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Ideal
instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Top.top
instTop
comap
RingHom.id
Semiring.toNonAssocSemiring
β€”RingHomSurjective.ids
IsScalarTower.left
map_le_iff_le_comap
map_smul''
smul_mono_right
instCovariantClassHSMulLe_1
le_top
top_eq_ofList_cons_smul_iff πŸ“–mathematicalβ€”Top.top
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instTop
Ideal
instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ideal.ofList
QuotSMulTop
Quotient.addCommGroup
CommRing.toRing
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
pointwiseAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
pointwiseDistribMulAction
Quotient.module
Quotient.isScalarTower
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
instDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SemigroupAction.toSMul
Monoid.toSemigroup
Ring.toSemiring
MulAction.toSemigroupAction
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”IsScalarTower.left
Quotient.isScalarTower
Quotient.subsingleton_iff
Equiv.subsingleton_congr
RingHomInvPair.ids

---

← Back to Index