Documentation Verification Report

FinitePresentation

πŸ“ Source: Mathlib/RingTheory/RingHom/FinitePresentation.lean

Statistics

MetricCount
DefinitionsFinitePresentation, FinitePresentation
2
Theoremsof_span_eq_top_target, of_span_eq_top_target_aux, of_span_eq_top_target_of_isLocalizationAway, pi, finitePresentation_holdsForLocalizationAway, finitePresentation_isLocal, finitePresentation_isStableUnderBaseChange, finitePresentation_localizationPreserves, finitePresentation_ofLocalizationSpanTarget, finitePresentation_respectsIso, finitePresentation_stableUnderComposition
11
Total13

AlgHom

Definitions

NameCategoryTheorems
FinitePresentation πŸ“–MathDef
7 mathmath: MvPolynomial.finitePresentation_universalFactorizationMap, FinitePresentation.of_comp_finiteType, FinitePresentation.id, FinitePresentation.of_finiteType, FinitePresentation.of_surjective, FinitePresentation.comp, FinitePresentation.comp_surjective

Algebra.FinitePresentation

Theorems

NameKindAssumesProvesValidatesDepends On
of_span_eq_top_target πŸ“–β€”Ideal.span
CommSemiring.toSemiring
CommRing.toCommSemiring
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Algebra.FinitePresentation
Localization.Away
CommRing.toCommMonoid
OreLocalization.instSemiring
Ring.toSemiring
CommRing.toRing
Submonoid.powers
CommMonoid.toMonoid
OreLocalization.oreSetComm
OreLocalization.instAlgebra
β€”β€”Ideal.span_eq_top_iff_finite
Algebra.FiniteType.of_span_eq_top_target
Algebra.FiniteType.of_finitePresentation
Algebra.FiniteType.iff_quotient_mvPolynomial''
Finsupp.mem_span_iff_linearCombination
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
map_sum
Finset.sum_congr
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
Finsupp.linearCombination_apply_of_mem_supported
Finset.coe_attach
mul_comm
sub_self
MulZeroClass.zero_mul
Ideal.instIsTwoSided_1
Ideal.Quotient.lift_surjective_of_surjective
Ideal.eq_top_iff_one
eq_of_sub_eq_zero
RingHom.instRingHomClass
RingHomClass.toAddMonoidHomClass
Ideal.Quotient.eq_zero_iff_mem
Ideal.subset_span
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
Ideal.sum_mem
Ideal.mul_mem_right
Finset.coe_image
Set.image_univ
quotient
Finset.coe_singleton
mvPolynomial
self
Finite.of_fintype
Ideal.Quotient.liftₐ_apply
of_span_eq_top_target_aux
of_span_eq_top_target_aux πŸ“–β€”DFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
Ideal.span
SetLike.coe
Finset
Finset.instSetLike
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Algebra.FinitePresentation
Localization.Away
CommRing.toCommMonoid
SetLike.instMembership
OreLocalization.instSemiring
Ring.toSemiring
CommRing.toRing
Submonoid.powers
CommMonoid.toMonoid
OreLocalization.oreSetComm
OreLocalization.instAlgebra
β€”β€”of_surjective
RingHom.ker_fg_of_localizationSpan
trans
OreLocalization.instIsScalarTower
IsScalarTower.right
IsLocalization.Away.finitePresentation
Localization.isLocalization
ker_fG_of_surjective
IsLocalization.Away.mapₐ_surjective_of_surjective
of_span_eq_top_target_of_isLocalizationAway πŸ“–β€”Ideal.span
CommSemiring.toSemiring
CommRing.toCommSemiring
Set.range
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsScalarTower
Algebra.toSMul
IsLocalization.Away
Algebra.FinitePresentation
β€”β€”of_span_eq_top_target
equiv
OreLocalization.instIsScalarTower
IsScalarTower.right
Localization.isLocalization
pi πŸ“–mathematicalAlgebra.FinitePresentation
CommRing.toCommSemiring
CommSemiring.toSemiring
Pi.semiring
Pi.algebra
β€”IsLocalization.away_of_isIdempotentElem
Pi.single_eq_same
mul_one
RingHom.ker_evalRingHom
RingHom.surjective
instRingHomSurjectiveForallEvalRingHom
of_span_eq_top_target_of_isLocalizationAway
Ideal.span_single_eq_top
IsScalarTower.of_algHom

RingHom

Definitions

NameCategoryTheorems
FinitePresentation πŸ“–MathDef
22 mathmath: finitePresentation_stableUnderComposition, finitePresentation_respectsIso, FinitePresentation.of_finiteType, AlgebraicGeometry.Scheme.Hom.finitePresentation_appLE, FinitePresentation.comp_surjective, finitePresentation_isLocal, FinitePresentation.of_comp_finiteType, AlgebraicGeometry.instHasRingHomPropertyLocallyOfFinitePresentationFinitePresentation, finitePresentation_localizationPreserves, AlgebraicGeometry.LocallyOfFinitePresentation.finitePresentation_appLE, finitePresentation_algebraMap, FinitePresentation.comp, FinitePresentation.of_bijective, AlgebraicGeometry.LocallyOfFinitePresentation.finitePresentation_of_affine_subset, finitePresentation_isStableUnderBaseChange, AlgebraicGeometry.locallyOfFinitePresentation_iff, FinitePresentation.codescendsAlong_faithfullyFlat, FinitePresentation.of_surjective, FinitePresentation.id, finitePresentation_ofLocalizationSpanTarget, smooth_def, finitePresentation_holdsForLocalizationAway

Theorems

NameKindAssumesProvesValidatesDepends On
finitePresentation_holdsForLocalizationAway πŸ“–mathematicalβ€”HoldsForLocalizationAway
FinitePresentation
β€”finitePresentation_algebraMap
IsLocalization.Away.finitePresentation
finitePresentation_isLocal πŸ“–mathematicalβ€”PropertyIsLocal
FinitePresentation
β€”LocalizationPreserves.away
finitePresentation_localizationPreserves
finitePresentation_ofLocalizationSpanTarget
OfLocalizationSpanTarget.ofLocalizationSpan
StableUnderComposition.stableUnderCompositionWithLocalizationAway
finitePresentation_stableUnderComposition
finitePresentation_holdsForLocalizationAway
finitePresentation_isStableUnderBaseChange πŸ“–mathematicalβ€”IsStableUnderBaseChange
FinitePresentation
β€”finitePresentation_respectsIso
Algebra.to_smulCommClass
Algebra.FinitePresentation.baseChange
finitePresentation_localizationPreserves πŸ“–mathematicalβ€”LocalizationPreserves
FinitePresentation
β€”IsStableUnderBaseChange.localizationPreserves
finitePresentation_isStableUnderBaseChange
finitePresentation_ofLocalizationSpanTarget πŸ“–mathematicalβ€”OfLocalizationSpanTarget
FinitePresentation
β€”IsScalarTower.Algebra.ext
Algebra.smul_def
Algebra.FinitePresentation.of_span_eq_top_target
finitePresentation_respectsIso πŸ“–mathematicalβ€”RespectsIso
FinitePresentation
β€”StableUnderComposition.respectsIso
finitePresentation_stableUnderComposition
FinitePresentation.of_surjective
RingEquiv.surjective
instRingHomClass
ker_coe_equiv
Submodule.fg_bot
finitePresentation_stableUnderComposition πŸ“–mathematicalβ€”StableUnderComposition
FinitePresentation
β€”FinitePresentation.comp

---

← Back to Index