Documentation Verification Report

Integral

πŸ“ Source: Mathlib/RingTheory/RingHom/Integral.lean

Statistics

MetricCount
Definitions0
TheoremsisIntegral_isStableUnderBaseChange, isIntegral_ofLocalizationSpan, isIntegral_respectsIso, isIntegral_stableUnderComposition
4
Total4

RingHom

Theorems

NameKindAssumesProvesValidatesDepends On
isIntegral_isStableUnderBaseChange πŸ“–mathematicalβ€”IsStableUnderBaseChange
IsIntegral
CommRing.toRing
β€”isIntegral_respectsIso
Algebra.to_smulCommClass
algebraMap_isIntegral_iff
Algebra.IsIntegral.tensorProduct
isIntegral_ofLocalizationSpan πŸ“–mathematicalβ€”OfLocalizationSpan
IsIntegral
CommRing.toRing
β€”Submodule.mem_of_span_eq_top_of_smul_pow_mem
IsIntegral.exists_multiple_integral_of_isLocalization
Localization.isLocalization
IsScalarTower.of_algebraMap_eq'
IsLocalization.lift_comp
IsLocalization.map_eq_zero_iff
Polynomial.hom_evalβ‚‚
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
instRingHomClass
IsScalarTower.algebraMap_apply
OreLocalization.instIsScalarTower
IsScalarTower.right
Algebra.smul_def
Submonoid.smul_def
IsScalarTower.algebraMap_eq
Polynomial.monic_scaleRoots_iff
Polynomial.scaleRoots_evalβ‚‚_mul
pow_add
SemigroupAction.mul_smul
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
pow_succ
smul_zero
map_pow
Polynomial.evalβ‚‚_one
mul_one
MulZeroClass.zero_mul
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
Polynomial.eq_one_of_monic_natDegree_zero
isIntegral_respectsIso πŸ“–mathematicalβ€”RespectsIso
IsIntegral
CommRing.toRing
β€”StableUnderComposition.respectsIso
isIntegral_stableUnderComposition
RingEquiv.apply_symm_apply
isIntegralElem_map
isIntegral_stableUnderComposition πŸ“–mathematicalβ€”StableUnderComposition
IsIntegral
CommRing.toRing
β€”IsIntegral.trans

---

← Back to Index