Documentation Verification Report

OpenImmersion

📁 Source: Mathlib/RingTheory/RingHom/OpenImmersion.lean

Statistics

MetricCount
DefinitionsIsStandardOpenImmersion, IsStandardOpenImmersion
2
Theoremsexists_away, trans, instIsStandardOpenImmersionAway, instIsStandardOpenImmersionTensorProduct, isStandardOpenImmersion_iff, algebraMap, comp, containsIdentities, holdsForLocalizationAway, id, isStableUnderBaseChange, of_bijective, respectsIso, stableUnderComposition, toAlgebra, isStandardOpenImmersion_algebraMap
16
Total18

Algebra

Definitions

NameCategoryTheorems
IsStandardOpenImmersion 📖CompData
6 mathmath: RingHom.IsStandardOpenImmersion.toAlgebra, RingHom.isStandardOpenImmersion_algebraMap, isStandardOpenImmersion_iff, instIsStandardOpenImmersionTensorProduct, IsStandardOpenImmersion.trans, instIsStandardOpenImmersionAway

Theorems

NameKindAssumesProvesValidatesDepends On
instIsStandardOpenImmersionAway 📖mathematicalIsStandardOpenImmersion
Localization.Away
CommSemiring.toCommMonoid
OreLocalization.instCommSemiring
Submonoid.powers
CommMonoid.toMonoid
OreLocalization.oreSetComm
OreLocalization.instAlgebra
CommSemiring.toSemiring
id
Localization.isLocalization
instIsStandardOpenImmersionTensorProduct 📖mathematicalIsStandardOpenImmersion
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
toModule
TensorProduct.instCommSemiring
TensorProduct.leftAlgebra
id
to_smulCommClass
to_smulCommClass
IsStandardOpenImmersion.exists_away
IsLocalization.Away.tensor
isStandardOpenImmersion_iff 📖mathematicalIsStandardOpenImmersion
IsLocalization.Away

Algebra.IsStandardOpenImmersion

Theorems

NameKindAssumesProvesValidatesDepends On
exists_away 📖mathematicalIsLocalization.Away
trans 📖mathematicalAlgebra.IsStandardOpenImmersionexists_away
IsLocalization.Away.of_associated
Associated.symm
IsLocalization.Away.associated_sec_fst
IsLocalization.Away.mul'

RingHom

Definitions

NameCategoryTheorems
IsStandardOpenImmersion 📖MathDef
10 mathmath: IsStandardOpenImmersion.id, IsStandardOpenImmersion.isStableUnderBaseChange, IsStandardOpenImmersion.stableUnderComposition, isStandardOpenImmersion_algebraMap, IsStandardOpenImmersion.respectsIso, IsStandardOpenImmersion.comp, IsStandardOpenImmersion.holdsForLocalizationAway, IsStandardOpenImmersion.containsIdentities, IsStandardOpenImmersion.algebraMap, IsStandardOpenImmersion.of_bijective

Theorems

NameKindAssumesProvesValidatesDepends On
isStandardOpenImmersion_algebraMap 📖mathematicalIsStandardOpenImmersion
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.IsStandardOpenImmersion
IsStandardOpenImmersion.eq_1
toAlgebra_algebraMap

RingHom.IsStandardOpenImmersion

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap 📖mathematicalRingHom.IsStandardOpenImmersion
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
RingHom.isStandardOpenImmersion_algebraMap
comp 📖mathematicalRingHom.IsStandardOpenImmersion
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
IsScalarTower.of_algebraMap_eq'
Algebra.IsStandardOpenImmersion.trans
toAlgebra
containsIdentities 📖mathematicalRingHom.ContainsIdentities
RingHom.IsStandardOpenImmersion
id
holdsForLocalizationAway 📖mathematicalRingHom.HoldsForLocalizationAway
RingHom.IsStandardOpenImmersion
algebraMap
id 📖mathematicalRingHom.IsStandardOpenImmersion
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
of_bijective
Function.bijective_id
isStableUnderBaseChange 📖mathematicalRingHom.IsStableUnderBaseChange
RingHom.IsStandardOpenImmersion
respectsIso
Algebra.to_smulCommClass
RingHom.isStandardOpenImmersion_algebraMap
Algebra.instIsStandardOpenImmersionTensorProduct
of_bijective 📖mathematicalFunction.Bijective
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
RingHom.IsStandardOpenImmersionIsLocalization.away_of_isUnit_of_bijective
isUnit_one
respectsIso 📖mathematicalRingHom.RespectsIso
RingHom.IsStandardOpenImmersion
RingHom.StableUnderComposition.respectsIso
stableUnderComposition
of_bijective
RingEquiv.bijective
stableUnderComposition 📖mathematicalRingHom.StableUnderComposition
RingHom.IsStandardOpenImmersion
comp
toAlgebra 📖mathematicalAlgebra.IsStandardOpenImmersion
CommRing.toCommSemiring
RingHom.toAlgebra

---

← Back to Index