Documentation Verification Report

AlgebraicallyClosed

📁 Source: Mathlib/RingTheory/RootsOfUnity/AlgebraicallyClosed.lean

Statistics

MetricCount
Definitions0
TheoremshasEnoughRootsOfUnity, hasEnoughRootsOfUnity_pow, hasEnoughRootsOfUnity, hasEnoughRootsOfUnity_pow, hasEnoughRootsOfUnity, hasEnoughRootsOfUnity_pow
6
Total6

AlgebraicClosure

Theorems

NameKindAssumesProvesValidatesDepends On
hasEnoughRootsOfUnity 📖mathematicalHasEnoughRootsOfUnity
AlgebraicClosure
CommRing.toCommMonoid
instCommRing
NeZero.of_injective
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsSepClosed.hasEnoughRootsOfUnity
IsSepClosed.of_isAlgClosed
isAlgClosed
hasEnoughRootsOfUnity_pow 📖mathematicalHasEnoughRootsOfUnity
AlgebraicClosure
CommRing.toCommMonoid
instCommRing
Monoid.toNatPow
Nat.instMonoid
NeZero.of_injective
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsSepClosed.hasEnoughRootsOfUnity_pow
IsSepClosed.of_isAlgClosed
isAlgClosed

IsSepClosed

Theorems

NameKindAssumesProvesValidatesDepends On
hasEnoughRootsOfUnity 📖mathematicalHasEnoughRootsOfUnity
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NeZero.of_neZero_natCast
isCyclotomicExtension
Set.mem_singleton_iff
IsCyclotomicExtension.exists_isPrimitiveRoot
rootsOfUnity.isCyclic
instIsDomain
hasEnoughRootsOfUnity_pow 📖mathematicalHasEnoughRootsOfUnity
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Monoid.toNatPow
Nat.instMonoid
NeZero.pow
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
hasEnoughRootsOfUnity

SeparableClosure

Theorems

NameKindAssumesProvesValidatesDepends On
hasEnoughRootsOfUnity 📖mathematicalHasEnoughRootsOfUnity
SeparableClosure
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IntermediateField.toField
AlgebraicClosure
AlgebraicClosure.instField
AlgebraicClosure.instAlgebra
Semifield.toCommSemiring
Field.toSemifield
Algebra.id
separableClosure
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
NeZero.of_injective
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
AlgebraicClosure.instIsScalarTower
IsScalarTower.right
RingHom.injective
DivisionRing.isSimpleRing
SubsemiringClass.nontrivial
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsSepClosed.hasEnoughRootsOfUnity
isSepClosed
hasEnoughRootsOfUnity_pow 📖mathematicalHasEnoughRootsOfUnity
SeparableClosure
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IntermediateField.toField
AlgebraicClosure
AlgebraicClosure.instField
AlgebraicClosure.instAlgebra
Semifield.toCommSemiring
Field.toSemifield
Algebra.id
separableClosure
Monoid.toNatPow
Nat.instMonoid
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
NeZero.of_injective
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
AlgebraicClosure.instIsScalarTower
IsScalarTower.right
RingHom.injective
DivisionRing.isSimpleRing
SubsemiringClass.nontrivial
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsSepClosed.hasEnoughRootsOfUnity_pow
isSepClosed

---

← Back to Index