π Source: Mathlib/RingTheory/RootsOfUnity/CyclotomicUnits.lean
associated_map_sub_one_map_sub_one
associated_pow_add_sub_sub_one
associated_pow_sub_one_pow_of_coprime
associated_sub_one_map_sub_one
associated_sub_one_pow_sub_one_of_coprime
geom_sum_isUnit
geom_sum_isUnit'
ntRootsFinset_pairwise_associated_sub_one_sub_of_prime
pow_sub_one_eq_geom_sum_mul_geom_sum_inv_mul_pow_sub_one
IsPrimitiveRoot
CommRing.toCommMonoid
Associated
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
AlgEquiv
AlgEquiv.instFunLike
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
autToPow_spec
ZMod.val_coe_unit_coprime
Monoid.toNatPow
isUnit
mul_assoc
associated_of_dvd_dvd
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
mul_geom_sum
pow_one
one_pow
sub_self
Nat.exists_mul_mod_eq_one_of_coprime
pow_mul
pow_mod_orderOf
eq_orderOf
IsUnit
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.range
mul_right_injectiveβ
Units.isUnit
AddMonoidWithOne.toNatCast
Finset.sum_congr
Finset.sum_singleton
pow_zero
Finset.sum_const
Finset.card_range
nsmul_eq_mul
mul_one
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
IsStrictOrderedRing.toIsOrderedRing
Mathlib.Tactic.Linarith.natCast_nonneg
Nat.cast_add
Nat.Prime
Set.Pairwise
SetLike.coe
Finset
Finset.instSetLike
Polynomial.nthRootsFinset
Nat.Prime.ne_zero
eq_pow_of_pow_eq_one
Polynomial.mem_nthRootsFinset
Nat.Prime.pos
Nat.coprime_of_lt_prime
Nat.Prime.two_le
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
associated_mul_unit_right_iff
Associated.refl
neg_sub
Associated.neg_right
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Units.val
IsUnit.unit
Units
Units.instInv
---
β Back to Index