Documentation Verification Report

EnoughRootsOfUnity

📁 Source: Mathlib/RingTheory/RootsOfUnity/EnoughRootsOfUnity.lean

Statistics

MetricCount
DefinitionsHasEnoughRootsOfUnity
1
Theoremscyc, exists_primitiveRoot, finite_rootsOfUnity, natCard_rootsOfUnity, of_card_le, of_dvd, prim, rootsOfUnity_isCyclic, monoidHom_equiv_self, hasEnoughRootsOfUnity, instHasEnoughRootsOfUnityOfNatNat
11
Total12

HasEnoughRootsOfUnity

Theorems

NameKindAssumesProvesValidatesDepends On
cyc 📖mathematicalIsCyclic
Units
CommMonoid.toMonoid
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
Subgroup.zpow
exists_primitiveRoot 📖mathematicalIsPrimitiveRootprim
finite_rootsOfUnity 📖mathematicalFinite
Units
CommMonoid.toMonoid
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
rootsOfUnity_isCyclic
IsCyclic.exists_generator
SubmonoidClass.toOneMemClass
SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
OneMemClass.coe_eq_one
Subtype.prop
Finite.of_surjective
Finite.of_fintype
Subgroup.mem_zpowers_iff
ZMod.natCast_val
ZMod.coe_intCast
zpow_eq_zpow_emod'
natCard_rootsOfUnity 📖mathematicalNat.card
Units
CommMonoid.toMonoid
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
exists_primitiveRoot
IsCyclic.exponent_eq_card
rootsOfUnity_isCyclic
dvd_antisymm
Nat.instIsCancelMulZero
Unique.instSubsingleton
Monoid.exponent_dvd_of_forall_pow_eq_one
Subgroup.instSubgroupClass
OneMemClass.coe_eq_one
Subtype.prop
IsPrimitiveRoot.eq_orderOf
IsPrimitiveRoot.isUnit
IsUnit.unit_spec
orderOf_units
Units.val_pow_eq_pow_val
IsPrimitiveRoot.pow_eq_one
Units.val_one
Monoid.order_dvd_exponent
of_card_le 📖mathematicalFintype.card
Units
CommMonoid.toMonoid
CommRing.toCommMonoid
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
rootsOfUnity.fintype
HasEnoughRootsOfUnitycard_rootsOfUnity_eq_iff_exists_isPrimitiveRoot
le_antisymm
card_rootsOfUnity
rootsOfUnity.isCyclic
of_dvd 📖mathematicalHasEnoughRootsOfUnityexists_primitiveRoot
IsPrimitiveRoot.pow
NeZero.pos
Nat.instCanonicallyOrderedAdd
mul_comm
Subgroup.isCyclic_of_le
rootsOfUnity_le_of_dvd
rootsOfUnity_isCyclic
prim 📖mathematicalIsPrimitiveRoot
rootsOfUnity_isCyclic 📖mathematicalIsCyclic
Units
CommMonoid.toMonoid
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
Subgroup.zpow
cyc

IsCyclic

Theorems

NameKindAssumesProvesValidatesDepends On
monoidHom_equiv_self 📖mathematicalMulEquiv
MonoidHom
Units
CommMonoid.toMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Units.instMulOneClass
MonoidHom.mul
CommGroup.toCommMonoid
Units.instCommGroupUnits
MulOne.toMul
LT.lt.ne'
Nat.card_pos
One.instNonempty
HasEnoughRootsOfUnity.natCard_rootsOfUnity
monoidHom_mulEquiv_rootsOfUnity
HasEnoughRootsOfUnity.rootsOfUnity_isCyclic

MulEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
hasEnoughRootsOfUnity 📖mathematicalHasEnoughRootsOfUnityHasEnoughRootsOfUnity.prim
IsPrimitiveRoot.coe_units_iff
SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
IsPrimitiveRoot.coe_submonoidClass_iff
IsPrimitiveRoot.map_of_injective
MulEquivClass.instMonoidHomClass
instMulEquivClass
injective
isCyclic_of_surjective
HasEnoughRootsOfUnity.rootsOfUnity_isCyclic
surjective

(root)

Definitions

NameCategoryTheorems
HasEnoughRootsOfUnity 📖CompData
12 mathmath: IsSepClosed.hasEnoughRootsOfUnity, MulEquiv.hasEnoughRootsOfUnity, HasEnoughRootsOfUnity.of_card_le, HasEnoughRootsOfUnity.of_dvd, instHasEnoughRootsOfUnityOfNatNat, AlgebraicClosure.hasEnoughRootsOfUnity, SeparableClosure.hasEnoughRootsOfUnity_pow, SeparableClosure.hasEnoughRootsOfUnity, instHasEnoughRootsOfUnityCircle, IsSepClosed.hasEnoughRootsOfUnity_pow, AlgebraicClosure.hasEnoughRootsOfUnity_pow, ZMod.instHasEnoughRootsOfUnityHSubNatOfNat

Theorems

NameKindAssumesProvesValidatesDepends On
instHasEnoughRootsOfUnityOfNatNat 📖mathematicalHasEnoughRootsOfUnityisCyclic_of_subsingleton
instSubsingletonSubtypeUnitsMemSubgroupRootsOfUnityOfNatNat

---

← Back to Index