Documentation Verification Report

Lemmas

πŸ“ Source: Mathlib/RingTheory/RootsOfUnity/Lemmas.lean

Statistics

MetricCount
Definitions0
Theoremsprod_one_sub_pow_eq_order, prod_pow_sub_one_eq_order, self_sub_one_pow_dvd_order
3
Total3

IsPrimitiveRoot

Theorems

NameKindAssumesProvesValidatesDepends On
prod_one_sub_pow_eq_order πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Finset.prod
Finset.range
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toNatCast
β€”X_pow_sub_C_eq_prod
one_pow
mul_right_cancelβ‚€
Polynomial.instIsRightCancelMulZeroOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
Polynomial.X_sub_C_ne_zero
IsDomain.toNontrivial
mul_comm
mul_one
pow_zero
Finset.prod_range_succ'
mul_geom_sum
Polynomial.C_1
Finset.prod_congr
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Polynomial.eval_prod
Polynomial.eval_sub
Polynomial.eval_X
Polynomial.eval_pow
Polynomial.eval_C
Polynomial.eval_geom_sum
Finset.sum_congr
Finset.sum_const
Finset.card_range
nsmul_eq_mul
Nat.cast_add
Nat.cast_one
prod_pow_sub_one_eq_order πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Finset.prod
Finset.range
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Distrib.toAdd
AddMonoidWithOne.toNatCast
β€”Finset.prod_const
Finset.card_range
Finset.prod_congr
neg_one_mul
neg_sub
prod_one_sub_pow_eq_order
self_sub_one_pow_dvd_order πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Subalgebra
Int.instCommSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.toIntAlgebra
CommRing.toRing
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set
Set.instSingletonSet
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
AddMonoidWithOne.toOne
β€”Subalgebra.sum_mem
Subalgebra.pow_mem
Algebra.self_mem_adjoin_singleton
geom_sum_mul
Subalgebra.mul_mem
Subalgebra.neg_mem
Subalgebra.one_mem
Subalgebra.prod_mem
Subalgebra.sub_mem
Nat.cast_add
Nat.cast_one
prod_pow_sub_one_eq_order
mul_assoc
Finset.card_range
Finset.prod_range_mul_prod_Ico
mul_comm
Finset.prod_mul_pow_card

---

← Back to Index