π Source: Mathlib/RingTheory/RootsOfUnity/Lemmas.lean
prod_one_sub_pow_eq_order
prod_pow_sub_one_eq_order
self_sub_one_pow_dvd_order
IsPrimitiveRoot
CommRing.toCommMonoid
Finset.prod
Finset.range
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toNatCast
X_pow_sub_C_eq_prod
one_pow
mul_right_cancelβ
Polynomial.instIsRightCancelMulZeroOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
Polynomial.X_sub_C_ne_zero
IsDomain.toNontrivial
mul_comm
mul_one
pow_zero
Finset.prod_range_succ'
mul_geom_sum
Polynomial.C_1
Finset.prod_congr
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Polynomial.eval_prod
Polynomial.eval_sub
Polynomial.eval_X
Polynomial.eval_pow
Polynomial.eval_C
Polynomial.eval_geom_sum
Finset.sum_congr
Finset.sum_const
Finset.card_range
nsmul_eq_mul
Nat.cast_add
Nat.cast_one
Distrib.toMul
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
Finset.prod_const
neg_one_mul
neg_sub
Subalgebra
Int.instCommSemiring
Ring.toIntAlgebra
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set
Set.instSingletonSet
Subalgebra.sum_mem
Subalgebra.pow_mem
Algebra.self_mem_adjoin_singleton
geom_sum_mul
Subalgebra.mul_mem
Subalgebra.neg_mem
Subalgebra.one_mem
Subalgebra.prod_mem
Subalgebra.sub_mem
mul_assoc
Finset.prod_range_mul_prod_Ico
Finset.prod_mul_pow_card
---
β Back to Index