π Source: Mathlib/RingTheory/RootsOfUnity/Minpoly.lean
isIntegral
is_roots_of_minpoly
minpoly_dvd_expand
minpoly_dvd_mod_p
minpoly_dvd_pow_mod
minpoly_dvd_x_pow_sub_one
minpoly_eq_pow
minpoly_eq_pow_coprime
pow_isRoot_minpoly
separable_minpoly_mod
squarefree_minpoly_mod
totient_le_degree_minpoly
IsPrimitiveRoot
CommRing.toCommMonoid
IsIntegral
Int.instCommRing
CommRing.toRing
Ring.toIntAlgebra
Polynomial.monic_X_pow_sub_C
ne_of_lt
Polynomial.evalβ_sub
Polynomial.evalβ_X_pow
iff_def
Polynomial.evalβ_one
sub_self
Finset
Finset.instHasSubset
primitiveRoots
Multiset.toFinset
Polynomial.roots
Polynomial.map
Int.instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
minpoly
primitiveRoots.congr_simp
primitiveRoots_zero
isPrimitiveRoot_iff
mem_primitiveRoots
Polynomial.mem_roots
Polynomial.map_monic_ne_zero
minpoly.monic
instNontrivialOfCharZero
Polynomial
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
DFunLike.coe
AlgHom
Int.instCommSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.expand
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
minpoly.isIntegrallyClosed_dvd
Int.instIsDomain
GCDMonoid.toIsIntegrallyClosed
IsBezout.nonemptyGCDMonoid
IsBezout.of_isPrincipalIdealRing
EuclideanDomain.to_principal_ideal_domain
instIsTorsionFreeIntOfIsAddTorsionFree
IsAddTorsionFree.of_isCancelMulZero_charZero
IsDomain.toIsCancelMulZero
Polynomial.aeval_def
Polynomial.coe_expand
Polynomial.comp.eq_1
Polynomial.evalβ_eq_eval_map
Polynomial.map_comp
Polynomial.map_pow
Polynomial.map_X
Polynomial.eval_comp
Polynomial.eval_X_pow
minpoly.aeval
ZMod
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
ZMod.instField
ZMod.commRing
Squarefree.isRadical
UniqueFactorizationMonoid.instDecompositionMonoid
PrincipalIdealRing.to_uniqueFactorizationMonoid
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
ZMod.instIsDomain
ZMod.expand_card
Polynomial.map_expand
map_dvd
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
Polynomial.instSub
Int.instRing
Polynomial.X
Polynomial.instOne
pow_zero
IsIntegralClosure.of_isIntegrallyClosed
Localization.isLocalization
OreLocalization.instIsScalarTower
IsScalarTower.right
Algebra.IsIntegral.of_finite
AddMonoid.FG.to_moduleFinite_int
AddMonoid.fg_of_addGroup_fg
AddGroup.instFGInt
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Polynomial.aeval_X_pow
Polynomial.aeval_one
pow_of_prime
Fact.out
minpoly.irreducible
Polynomial.IsPrimitive.mul
Polynomial.Monic.isPrimitive
Polynomial.IsPrimitive.Int.dvd_iff_map_cast_dvd_map_cast
ne_of_gt
Polynomial.map_mul
IsCoprime.mul_dvd
Polynomial.IsPrimitive.Int.irreducible_iff_irreducible_map_cast
dvd_or_isCoprime
Polynomial.map_dvd_map
Int.cast_injective
Rat.instCharZero
Polynomial.eq_of_monic_of_associated
associated_of_dvd_dvd
Polynomial.instIsLeftCancelMulZeroOfIsCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
IsCancelMulZero.toIsLeftCancelMulZero
Int.instIsCancelMulZero
Irreducible.dvd_symm
lt_of_lt_of_le
Nat.instAtLeastTwoHAddOfNat
Nat.cast_lt
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
one_lt_two
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Nat.instIsOrderedAddMonoid
le_emultiplicity_of_pow_dvd
dvd_trans
sq
mul_assoc
Polynomial.map_one
Polynomial.map_sub
Polynomial.coe_mapRingHom
Polynomial.Separable.squarefree
Polynomial.separable_X_pow_sub_C
ZMod.natCast_eq_zero_iff
one_ne_zero
NeZero.one
ZMod.nontrivial
Nat.Prime.one_lt'
squarefree_iff_emultiplicity_le_one
LE.le.not_gt
Nat.cast_one
Polynomial.degree_eq_zero_of_isUnit
IsDomain.to_noZeroDivisors
LT.lt.ne'
minpoly.degree_pos
Polynomial.degree_map_eq_of_leadingCoeff_ne_zero
Polynomial.Monic.leadingCoeff
eq_intCast
Int.cast_one
UniqueFactorizationMonoid.induction_on_prime
Nat.instUniqueFactorizationMonoid
Nat.isUnit_iff
pow_one
Prime.nat_prime
Nat.Prime.coprime_iff_not_dvd
pow_of_coprime
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_congr
Polynomial.IsRoot
Polynomial.eval_map
Polynomial.Separable
Semifield.toCommSemiring
RingHomClass.toAddMonoidHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
map_one
MonoidHomClass.toOneHomClass
Polynomial.Separable.of_dvd
Squarefree
Nat.totient
Polynomial.natDegree
card_primitiveRoots
Finset.card_le_card
Multiset.toFinset_card_le
Polynomial.card_roots'
Polynomial.natDegree_map_le
---
β Back to Index