Documentation Verification Report

Minpoly

πŸ“ Source: Mathlib/RingTheory/RootsOfUnity/Minpoly.lean

Statistics

MetricCount
Definitions0
TheoremsisIntegral, is_roots_of_minpoly, minpoly_dvd_expand, minpoly_dvd_mod_p, minpoly_dvd_pow_mod, minpoly_dvd_x_pow_sub_one, minpoly_eq_pow, minpoly_eq_pow_coprime, pow_isRoot_minpoly, separable_minpoly_mod, squarefree_minpoly_mod, totient_le_degree_minpoly
12
Total12

IsPrimitiveRoot

Theorems

NameKindAssumesProvesValidatesDepends On
isIntegral πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
IsIntegral
Int.instCommRing
CommRing.toRing
Ring.toIntAlgebra
β€”Polynomial.monic_X_pow_sub_C
ne_of_lt
Polynomial.evalβ‚‚_sub
Polynomial.evalβ‚‚_X_pow
iff_def
Polynomial.evalβ‚‚_one
sub_self
is_roots_of_minpoly πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Finset
Finset.instHasSubset
primitiveRoots
Multiset.toFinset
Polynomial.roots
Polynomial.map
Int.instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
minpoly
Int.instCommRing
CommRing.toRing
Ring.toIntAlgebra
β€”primitiveRoots.congr_simp
primitiveRoots_zero
isPrimitiveRoot_iff
mem_primitiveRoots
Polynomial.mem_roots
Polynomial.map_monic_ne_zero
minpoly.monic
isIntegral
instNontrivialOfCharZero
pow_isRoot_minpoly
minpoly_dvd_expand πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Int.instCommRing
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
minpoly
CommRing.toRing
Ring.toIntAlgebra
DFunLike.coe
AlgHom
Int.instCommSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.expand
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”minpoly.isIntegrallyClosed_dvd
Int.instIsDomain
GCDMonoid.toIsIntegrallyClosed
IsBezout.nonemptyGCDMonoid
IsBezout.of_isPrincipalIdealRing
EuclideanDomain.to_principal_ideal_domain
instIsTorsionFreeIntOfIsAddTorsionFree
IsAddTorsionFree.of_isCancelMulZero_charZero
IsDomain.toIsCancelMulZero
isIntegral
Polynomial.aeval_def
Polynomial.coe_expand
Polynomial.comp.eq_1
Polynomial.evalβ‚‚_eq_eval_map
Polynomial.map_comp
Polynomial.map_pow
Polynomial.map_X
Polynomial.eval_comp
Polynomial.eval_X_pow
minpoly.aeval
minpoly_dvd_mod_p πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Polynomial
ZMod
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
ZMod.instField
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
ZMod.commRing
Polynomial.map
Int.instSemiring
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
minpoly
Int.instCommRing
CommRing.toRing
Ring.toIntAlgebra
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”Squarefree.isRadical
UniqueFactorizationMonoid.instDecompositionMonoid
PrincipalIdealRing.to_uniqueFactorizationMonoid
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
ZMod.instIsDomain
EuclideanDomain.to_principal_ideal_domain
squarefree_minpoly_mod
minpoly_dvd_pow_mod
minpoly_dvd_pow_mod πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Polynomial
ZMod
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
ZMod.instField
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
ZMod.commRing
Polynomial.map
Int.instSemiring
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
minpoly
Int.instCommRing
CommRing.toRing
Ring.toIntAlgebra
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”ZMod.expand_card
Polynomial.map_expand
map_dvd
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
minpoly_dvd_expand
minpoly_dvd_x_pow_sub_one πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Int.instCommRing
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
minpoly
CommRing.toRing
Ring.toIntAlgebra
Polynomial.instSub
Int.instRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.X
Polynomial.instOne
β€”pow_zero
sub_self
minpoly.isIntegrallyClosed_dvd
Int.instIsDomain
IsIntegralClosure.of_isIntegrallyClosed
Localization.isLocalization
GCDMonoid.toIsIntegrallyClosed
IsBezout.nonemptyGCDMonoid
IsBezout.of_isPrincipalIdealRing
EuclideanDomain.to_principal_ideal_domain
OreLocalization.instIsScalarTower
IsScalarTower.right
Algebra.IsIntegral.of_finite
AddMonoid.FG.to_moduleFinite_int
AddMonoid.fg_of_addGroup_fg
AddGroup.instFGInt
instIsTorsionFreeIntOfIsAddTorsionFree
IsAddTorsionFree.of_isCancelMulZero_charZero
IsDomain.toIsCancelMulZero
isIntegral
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Polynomial.aeval_X_pow
iff_def
Polynomial.aeval_one
minpoly_eq_pow πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
minpoly
Int.instCommRing
CommRing.toRing
Ring.toIntAlgebra
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”minpoly.monic
isIntegral
pow_of_prime
Fact.out
minpoly.irreducible
Int.instIsDomain
Polynomial.IsPrimitive.mul
Polynomial.Monic.isPrimitive
Polynomial.IsPrimitive.Int.dvd_iff_map_cast_dvd_map_cast
Polynomial.monic_X_pow_sub_C
ne_of_gt
Polynomial.map_mul
IsCoprime.mul_dvd
Polynomial.IsPrimitive.Int.irreducible_iff_irreducible_map_cast
dvd_or_isCoprime
IsBezout.of_isPrincipalIdealRing
EuclideanDomain.to_principal_ideal_domain
Polynomial.map_dvd_map
Int.cast_injective
Rat.instCharZero
Polynomial.eq_of_monic_of_associated
associated_of_dvd_dvd
Polynomial.instIsLeftCancelMulZeroOfIsCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
IsCancelMulZero.toIsLeftCancelMulZero
Int.instIsCancelMulZero
Irreducible.dvd_symm
minpoly_dvd_x_pow_sub_one
map_dvd
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
minpoly_dvd_mod_p
lt_of_lt_of_le
Nat.instAtLeastTwoHAddOfNat
Nat.cast_lt
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
one_lt_two
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Nat.instIsOrderedAddMonoid
le_emultiplicity_of_pow_dvd
dvd_trans
Polynomial.map_pow
sq
mul_assoc
Polynomial.map_X
Polynomial.map_one
Polynomial.map_sub
Polynomial.coe_mapRingHom
Polynomial.Separable.squarefree
Polynomial.separable_X_pow_sub_C
ZMod.natCast_eq_zero_iff
one_ne_zero
NeZero.one
ZMod.nontrivial
Nat.Prime.one_lt'
squarefree_iff_emultiplicity_le_one
LE.le.not_gt
Nat.cast_one
Polynomial.degree_eq_zero_of_isUnit
IsDomain.to_noZeroDivisors
ZMod.instIsDomain
LT.lt.ne'
minpoly.degree_pos
instNontrivialOfCharZero
Polynomial.degree_map_eq_of_leadingCoeff_ne_zero
Polynomial.Monic.leadingCoeff
eq_intCast
Int.cast_one
minpoly_eq_pow_coprime πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
minpoly
Int.instCommRing
CommRing.toRing
Ring.toIntAlgebra
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”UniqueFactorizationMonoid.induction_on_prime
Nat.instUniqueFactorizationMonoid
pow_zero
Nat.isUnit_iff
pow_one
Prime.nat_prime
Nat.Prime.coprime_iff_not_dvd
minpoly_eq_pow
pow_of_coprime
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_congr
pow_isRoot_minpoly πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Polynomial.IsRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.map
Int.instSemiring
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
minpoly
Int.instCommRing
CommRing.toRing
Ring.toIntAlgebra
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”minpoly_eq_pow_coprime
Polynomial.eval_map
minpoly.aeval
separable_minpoly_mod πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Polynomial.Separable
ZMod
Semifield.toCommSemiring
Field.toSemifield
ZMod.instField
Polynomial.map
Int.instSemiring
CommSemiring.toSemiring
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
ZMod.commRing
minpoly
Int.instCommRing
CommRing.toRing
Ring.toIntAlgebra
β€”map_sub
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
Polynomial.map_X
map_one
MonoidHomClass.toOneHomClass
map_dvd
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
minpoly_dvd_x_pow_sub_one
Polynomial.Separable.of_dvd
Polynomial.separable_X_pow_sub_C
ZMod.natCast_eq_zero_iff
one_ne_zero
NeZero.one
ZMod.nontrivial
Nat.Prime.one_lt'
squarefree_minpoly_mod πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Squarefree
Polynomial
ZMod
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
ZMod.instField
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.map
Int.instSemiring
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
ZMod.commRing
minpoly
Int.instCommRing
CommRing.toRing
Ring.toIntAlgebra
β€”Polynomial.Separable.squarefree
separable_minpoly_mod
totient_le_degree_minpoly πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Nat.totient
Polynomial.natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
Int.instCommRing
minpoly
CommRing.toRing
Ring.toIntAlgebra
β€”card_primitiveRoots
Finset.card_le_card
is_roots_of_minpoly
Multiset.toFinset_card_le
Polynomial.card_roots'
Polynomial.natDegree_map_le

---

← Back to Index