Documentation Verification Report

PrimitiveRoots

πŸ“ Source: Mathlib/RingTheory/RootsOfUnity/PrimitiveRoots.lean

Statistics

MetricCount
DefinitionsIsPrimitiveRoot, autToPow, primitiveRootsPowEquiv, primitiveRootsPowEquivOfCoprime, toRootsOfUnity, zmodEquivZPowers, primitiveRoots, rootsOfUnityEquivOfPrimitiveRoots
8
Theoremsexists_apply_ne_one, adjoin_pair_eq, autToPow_spec, card_nthRoots, card_nthRootsFinset, card_nthRoots_one, card_primitiveRoots, card_rootsOfUnity, card_rootsOfUnity', coe_autToPow_apply, coe_submonoidClass_iff, coe_units_iff, disjoint, dvd_of_pow_eq_one, eq_neg_one_of_two_right, eq_orderOf, eq_pow_of_mem_rootsOfUnity, eq_pow_of_pow_eq_one, existsUnique, exists_pos, geom_sum_eq_zero, iff, iff_def, iff_orderOf, injOn_pow, injOn_pow_mul, inv, inv_iff, isOfFinOrder, isPrimitiveRoot_iff, isPrimitiveRoot_iff', isUnit, isUnit_unit, isUnit_unit', map_iff_of_injective, map_of_injective, map_rootsOfUnity, mem_nthRootsFinset, mem_rootsOfUnity, mk_of_lt, neZero', ne_one, ne_zero, neg_one, not_iff, nthRoots_eq, nthRoots_nodup, nthRoots_one_eq_biUnion_primitiveRoots, nthRoots_one_nodup, of_map_of_injective, of_subsingleton, one, one_right_iff, orderOf, pow, pow_eq_one, pow_eq_one_iff_dvd, pow_iff_coprime, pow_inj, pow_mul_pow_lcm, pow_ne_one_of_pos_of_lt, pow_of_coprime, pow_of_dvd, pow_of_prime, pow_sub_one_eq, primitiveRootsPowEquivOfCoprime_apply_coe, primitiveRootsPowEquiv_apply_coe, primitiveRootsPowEquiv_symm_apply_coe, primitiveRoots_one, sub_one_ne_zero, unique, val_inv_toRootsOfUnity_coe, val_toRootsOfUnity_coe, zero, zmodEquivZPowers_apply_coe_int, zmodEquivZPowers_apply_coe_nat, zmodEquivZPowers_symm_apply_pow, zmodEquivZPowers_symm_apply_pow', zmodEquivZPowers_symm_apply_zpow, zmodEquivZPowers_symm_apply_zpow', zpow_eq_one, zpow_eq_one_iff_dvd, zpow_of_gcd_eq_one, zpowers_eq, exists_monoidHom_apply_ne_one, card_rootsOfUnity_eq_iff_exists_isPrimitiveRoot, isPrimitiveRoot_of_mem_primitiveRoots, isPrimitiveRoot_of_mem_rootsOfUnity, mem_primitiveRoots, primitiveRoots_zero, rootsOfUnityEquivOfPrimitiveRoots_apply_coe_inv_val, rootsOfUnityEquivOfPrimitiveRoots_symm_apply, val_rootsOfUnityEquivOfPrimitiveRoots_apply_coe
93
Total101

IsCyclic

Theorems

NameKindAssumesProvesValidatesDepends On
exists_apply_ne_one πŸ“–β€”IsPrimitiveRoot
CommGroup.toCommMonoid
Nat.card
β€”β€”exists_generator
IsPrimitiveRoot.eq_orderOf
orderOf_eq_card_of_forall_mem_zpowers
Nat.card_eq_fintype_card
dvd_refl
monoidHomOfForallMemZpowers_apply_gen
Mathlib.Tactic.Contrapose.contraposeβ‚„
Submonoid.mem_powers_iff
mem_powers_iff_mem_zpowers
IsPrimitiveRoot.pow_eq_one_iff_dvd
map_pow
MonoidHom.instMonoidHomClass
pow_mul
pow_card_eq_one
one_pow

IsPrimitiveRoot

Definitions

NameCategoryTheorems
autToPow πŸ“–CompOp
5 mathmath: autToPow_eq_modularCyclotomicCharacter, coe_autToPow_apply, autToPow_injective, autToPow_spec, IsCyclotomicExtension.autEquivPow_apply
primitiveRootsPowEquiv πŸ“–CompOp
2 mathmath: primitiveRootsPowEquiv_symm_apply_coe, primitiveRootsPowEquiv_apply_coe
primitiveRootsPowEquivOfCoprime πŸ“–CompOp
1 mathmath: primitiveRootsPowEquivOfCoprime_apply_coe
toRootsOfUnity πŸ“–CompOp
3 mathmath: val_toRootsOfUnity_coe, coe_autToPow_apply, val_inv_toRootsOfUnity_coe
zmodEquivZPowers πŸ“–CompOp
6 mathmath: zmodEquivZPowers_symm_apply_pow', zmodEquivZPowers_symm_apply_pow, zmodEquivZPowers_symm_apply_zpow', zmodEquivZPowers_apply_coe_nat, zmodEquivZPowers_apply_coe_int, zmodEquivZPowers_symm_apply_zpow

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_pair_eq πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Algebra.adjoin
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instInsert
Set.instSingletonSet
β€”le_antisymm
Algebra.adjoin_le
Set.pair_subset_iff
eq_pow_of_pow_eq_one
pow_eq_one_iff_dvd
Subalgebra.pow_mem
Algebra.self_mem_adjoin_singleton
pow_mul_pow_lcm
pow_eq_one
pow_mem
SubsemiringClass.toSubmonoidClass
Subalgebra.instSubsemiringClass
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
Algebra.mem_adjoin_of_mem
autToPow_spec πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.val
Units.val
ZMod
ZMod.commRing
DFunLike.coe
MonoidHom
AlgEquiv
Units
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
Units.instMulOneClass
MonoidHom.instFunLike
autToPow
AlgEquiv.instFunLike
β€”map_rootsOfUnity_eq_pow_self
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
coe_autToPow_apply
rootsOfUnity.coe_pow
pow_eq_pow_iff_modEq
ZMod.val_natCast
eq_orderOf
Subgroup.orderOf_coe
orderOf_units
Nat.mod_modEq
card_nthRoots πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Multiset.card
Polynomial.nthRoots
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”nthRoots_eq
Multiset.card_map
Multiset.card_range
Polynomial.nthRoots_zero
Polynomial.mem_nthRoots
card_nthRootsFinset πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Finset.card
Polynomial.nthRootsFinset
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”Polynomial.nthRootsFinset.eq_1
nthRoots_one_nodup
Multiset.toFinset_eq
card_nthRoots_one
card_nthRoots_one πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Multiset.card
Polynomial.nthRoots
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”card_nthRoots
pow_eq_one
card_primitiveRoots πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Finset.card
primitiveRoots
Nat.totient
β€”primitiveRoots.congr_simp
primitiveRoots_zero
Finset.card_bij
mem_primitiveRoots
pow_of_coprime
isPrimitiveRoot_iff
card_rootsOfUnity πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Fintype.card
Units
CommMonoid.toMonoid
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
rootsOfUnity.fintype
β€”isUnit
card_rootsOfUnity'
coe_units_iff
card_rootsOfUnity' πŸ“–mathematicalIsPrimitiveRoot
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
CommGroup.toCommMonoid
Units.instCommGroupUnits
CommRing.toCommMonoid
Fintype.card
CommMonoid.toMonoid
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
rootsOfUnity.fintype
β€”Fintype.card_congr
zpowers_eq
ZMod.card
coe_autToPow_apply πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Units.val
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.commRing
DFunLike.coe
MonoidHom
AlgEquiv
Units
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
Units.instMulOneClass
MonoidHom.instFunLike
autToPow
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
AlgEquiv.instFunLike
CommMonoid.toMonoid
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
toRootsOfUnity
Monoid.toNatPow
map_rootsOfUnity_eq_pow_self
MonoidWithZeroHomClass.toMonoidHomClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
β€”β€”
coe_submonoidClass_iff πŸ“–mathematicalβ€”IsPrimitiveRoot
SetLike.instMembership
SubmonoidClass.toCommMonoid
β€”SubmonoidClass.toOneMemClass
coe_units_iff πŸ“–mathematicalβ€”IsPrimitiveRoot
Units.val
CommMonoid.toMonoid
Units
CommGroup.toCommMonoid
Units.instCommGroupUnits
β€”β€”
disjoint πŸ“–mathematicalβ€”Disjoint
Finset
Finset.partialOrder
Finset.instOrderBot
primitiveRoots
β€”Finset.disjoint_left
unique
isPrimitiveRoot_of_mem_primitiveRoots
dvd_of_pow_eq_one πŸ“–β€”IsPrimitiveRoot
Monoid.toNatPow
CommMonoid.toMonoid
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”β€”β€”
eq_neg_one_of_two_right πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”sq_eq_one_iff
pow_eq_one
ne_one
one_lt_two
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
eq_orderOf πŸ“–mathematicalIsPrimitiveRootorderOf
CommMonoid.toMonoid
β€”unique
orderOf
eq_pow_of_mem_rootsOfUnity πŸ“–mathematicalIsPrimitiveRoot
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
CommGroup.toCommMonoid
Units.instCommGroupUnits
CommRing.toCommMonoid
Subgroup
CommMonoid.toMonoid
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
Monoid.toNatPow
Units.instMonoid
β€”zpowers_eq
Nat.cast_zero
Int.instAddLeftMono
Int.instZeroLEOneClass
Int.instCharZero
NeZero.pos
Nat.instCanonicallyOrderedAdd
ne_of_gt
CanLift.prf
instCanLiftIntNatCastLeOfNat
zpow_natCast
zpow_add
zpow_mul
zpow_eq_one
one_zpow
mul_one
eq_pow_of_pow_eq_one πŸ“–β€”IsPrimitiveRoot
CommRing.toCommMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”β€”CanLift.prf
instCanLiftUnitsValIsUnit
isUnit
IsUnit.of_pow_eq_one
eq_pow_of_mem_rootsOfUnity
coe_units_iff
mem_rootsOfUnity'
existsUnique πŸ“–mathematicalβ€”ExistsUnique
IsPrimitiveRoot
β€”orderOf
unique
exists_pos πŸ“–mathematicalMonoid.toNatPow
CommMonoid.toMonoid
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
IsPrimitiveRootβ€”orderOf_pos_iff
isOfFinOrder_iff_pow_eq_one
orderOf
geom_sum_eq_zero πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.range
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”eq_zero_of_ne_zero_of_mul_left_eq_zero
IsDomain.to_noZeroDivisors
sub_ne_zero_of_ne
ne_one
mul_neg_geom_sum
pow_eq_one
sub_self
iff πŸ“–mathematicalβ€”IsPrimitiveRoot
Monoid.toNatPow
CommMonoid.toMonoid
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”pow_eq_one
pow_ne_one_of_lt_orderOf
LT.lt.ne'
eq_orderOf
mk_of_lt
iff_def πŸ“–mathematicalβ€”IsPrimitiveRoot
Monoid.toNatPow
CommMonoid.toMonoid
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”β€”
iff_orderOf πŸ“–mathematicalβ€”IsPrimitiveRoot
orderOf
CommMonoid.toMonoid
β€”not_iff_not
not_iff
injOn_pow πŸ“–mathematicalIsPrimitiveRootSet.InjOn
Monoid.toNatPow
CommMonoid.toMonoid
SetLike.coe
Finset
Finset.instSetLike
Finset.range
β€”Set.mem_Iio
Finset.coe_range
injOn_pow_mul πŸ“–mathematicalIsPrimitiveRoot
CommMonoidWithZero.toCommMonoid
Set.InjOn
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
Monoid.toNatPow
MonoidWithZero.toMonoid
SetLike.coe
Finset
Finset.instSetLike
Finset.range
β€”injOn_pow
IsCancelMulZero.toIsRightCancelMulZero
inv πŸ“–mathematicalIsPrimitiveRoot
DivisionCommMonoid.toCommMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
β€”inv_pow
pow_eq_one
inv_one
dvd_of_pow_eq_one
inv_iff πŸ“–mathematicalβ€”IsPrimitiveRoot
DivisionCommMonoid.toCommMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
β€”inv
inv_inv
isOfFinOrder πŸ“–mathematicalIsPrimitiveRootIsOfFinOrder
CommMonoid.toMonoid
β€”isPeriodicPt_mul_iff_pow_eq_one
pow_eq_one
isPrimitiveRoot_iff πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”eq_pow_of_pow_eq_one
pow_eq_one
pow_iff_coprime
NeZero.pos
Nat.instCanonicallyOrderedAdd
pow_of_coprime
isPrimitiveRoot_iff' πŸ“–mathematicalIsPrimitiveRoot
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
CommGroup.toCommMonoid
Units.instCommGroupUnits
CommRing.toCommMonoid
Monoid.toNatPow
Units.instMonoid
β€”eq_pow_of_mem_rootsOfUnity
pow_eq_one
pow_iff_coprime
NeZero.pos
Nat.instCanonicallyOrderedAdd
pow_of_coprime
isUnit πŸ“–mathematicalIsPrimitiveRootIsUnit
CommMonoid.toMonoid
β€”IsUnit.of_mul_eq_one
instIsDedekindFiniteMonoid
pow_succ'
pow_eq_one
isUnit_unit πŸ“–mathematicalIsPrimitiveRootUnits
CommMonoid.toMonoid
CommGroup.toCommMonoid
Units.instCommGroupUnits
IsUnit.unit
isUnit
β€”isUnit
coe_units_iff
isUnit_unit' πŸ“–mathematicalIsPrimitiveRoot
DivisionCommMonoid.toCommMonoid
Units
DivInvMonoid.toMonoid
DivisionMonoid.toDivInvMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toCommMonoid
Units.instCommGroupUnits
IsUnit.unit'
isUnit
β€”isUnit
coe_units_iff
map_iff_of_injective πŸ“–mathematicalDFunLike.coeIsPrimitiveRootβ€”of_map_of_injective
map_of_injective
map_of_injective πŸ“–β€”IsPrimitiveRoot
DFunLike.coe
β€”β€”map_pow
pow_eq_one
map_one
MonoidHomClass.toOneHomClass
eq_orderOf
orderOf_dvd_of_pow_eq_one
map_rootsOfUnity πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
DFunLike.coe
Subgroup.map
Units
CommMonoid.toMonoid
Units.instGroup
Units.map
MonoidHomClass.toMonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
rootsOfUnity
β€”isUnit
isUnit_unit
zpowers_eq
map_of_injective
MonoidHom.instMonoidHomClass
Units.map_injective
MonoidHom.map_zpowers
mem_nthRootsFinset πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Finset
Finset.instMembership
Polynomial.nthRootsFinset
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”Polynomial.mem_nthRootsFinset
pow_eq_one
mem_rootsOfUnity πŸ“–mathematicalIsPrimitiveRoot
Units
CommMonoid.toMonoid
CommGroup.toCommMonoid
Units.instCommGroupUnits
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
β€”pow_eq_one
mk_of_lt πŸ“–mathematicalMonoid.toNatPow
CommMonoid.toMonoid
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
IsPrimitiveRootβ€”LE.le.eq_of_not_lt
neZero' πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”NeZero.of_not_dvd
ringChar.charP
MulZeroClass.zero_mul
MulZeroClass.mul_zero
CharP.char_is_prime_of_pos
IsDomain.to_noZeroDivisors
IsDomain.toNontrivial
pow_ne_one_of_pos_of_lt
lt_mul_of_one_lt_left
IsStrictOrderedRing.toMulPosStrictMono
Nat.instIsStrictOrderedRing
Nat.Prime.one_lt
Fact.out
isReduced_of_noZeroDivisors
expChar_prime
frobenius_def
pow_mul'
pow_eq_one
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
ne_one πŸ“–β€”IsPrimitiveRootβ€”β€”pow_ne_one_of_pos_of_lt
one_ne_zero
pow_one
ne_zero πŸ“–β€”IsPrimitiveRoot
CommMonoidWithZero.toCommMonoid
β€”β€”unique
zero
neg_one πŸ“–mathematicalβ€”IsPrimitiveRoot
CommRing.toCommMonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”orderOf_neg_one
ringChar.eq_iff
orderOf
not_iff πŸ“–mathematicalβ€”IsPrimitiveRootβ€”orderOf
unique
nthRoots_eq πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.nthRoots
Multiset.map
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Multiset.range
β€”Polynomial.nthRoots_zero
Polynomial.nthRoots.congr_simp
zero_pow
LT.lt.ne'
Polynomial.nthRoots_zero_right
Multiset.map_congr
MulZeroClass.mul_zero
Multiset.map_const'
Multiset.card_range
Multiset.eq_of_le_of_card_le
Finset.range_val
Finset.image_val_of_injOn
injOn_pow_mul
IsDomain.toIsCancelMulZero
Finset.val_le_iff_val_subset
Polynomial.mem_nthRoots
mul_pow
pow_mul
mul_comm
pow_eq_one
one_pow
one_mul
Multiset.card_map
Polynomial.card_nthRoots
nthRoots_nodup πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Multiset.Nodup
Polynomial.nthRoots
β€”Polynomial.nthRoots_zero
zero_pow
LT.lt.ne'
nthRoots_eq
Multiset.nodup_map_iff_inj_on
Multiset.nodup_range
injOn_pow_mul
IsDomain.toIsCancelMulZero
Polynomial.mem_nthRoots
nthRoots_one_eq_biUnion_primitiveRoots πŸ“–mathematicalβ€”Polynomial.nthRootsFinset
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Finset.biUnion
Nat.divisors
primitiveRoots
β€”Polynomial.nthRootsFinset.congr_simp
Polynomial.nthRootsFinset_zero
Nat.divisors_zero
nthRoots_one_nodup πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Multiset.Nodup
Polynomial.nthRoots
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”nthRoots_nodup
one_ne_zero
NeZero.one
IsDomain.toNontrivial
of_map_of_injective πŸ“–β€”IsPrimitiveRoot
DFunLike.coe
β€”β€”map_pow
map_one
MonoidHomClass.toOneHomClass
pow_eq_one
eq_orderOf
orderOf_dvd_of_pow_eq_one
of_subsingleton πŸ“–mathematicalβ€”IsPrimitiveRootβ€”one_dvd
one πŸ“–mathematicalβ€”IsPrimitiveRoot
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”pow_one
one_dvd
one_right_iff πŸ“–mathematicalβ€”IsPrimitiveRoot
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”pow_one
pow_eq_one
one
orderOf πŸ“–mathematicalβ€”IsPrimitiveRoot
orderOf
CommMonoid.toMonoid
β€”pow_orderOf_eq_one
orderOf_dvd_of_pow_eq_one
pow πŸ“–mathematicalIsPrimitiveRootMonoid.toNatPow
CommMonoid.toMonoid
β€”pow_eq_one
dvd_of_pow_eq_one
pow_eq_one πŸ“–mathematicalIsPrimitiveRootMonoid.toNatPow
CommMonoid.toMonoid
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”β€”
pow_eq_one_iff_dvd πŸ“–mathematicalIsPrimitiveRootMonoid.toNatPow
CommMonoid.toMonoid
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”dvd_of_pow_eq_one
pow_mul
pow_eq_one
one_pow
pow_iff_coprime πŸ“–mathematicalIsPrimitiveRootMonoid.toNatPow
CommMonoid.toMonoid
β€”mul_comm
dvd_of_pow_eq_one
pow_mul'
mul_assoc
pow_mul
pow_eq_one
one_pow
LT.lt.ne'
pow_of_coprime
pow_inj πŸ“–β€”IsPrimitiveRoot
Monoid.toNatPow
CommMonoid.toMonoid
β€”β€”le_antisymm
tsub_eq_zero_iff_le
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
dvd_of_pow_eq_one
IsUnit.pow
isUnit
pow_add
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
one_mul
lt_of_le_of_lt
tsub_le_self
le_of_not_ge
pow_mul_pow_lcm πŸ“–mathematicalIsPrimitiveRootMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Monoid.toNatPow
Nat.factorizationLCMLeft
Nat.factorizationLCMRight
β€”eq_orderOf
Commute.orderOf_mul_pow_eq_lcm
Commute.all
orderOf
pow_ne_one_of_pos_of_lt πŸ“–β€”IsPrimitiveRootβ€”β€”dvd_of_pow_eq_one
not_le_of_gt
pow_of_coprime πŸ“–mathematicalIsPrimitiveRootMonoid.toNatPow
CommMonoid.toMonoid
β€”pow_one
isUnit
Units.val_pow_eq_pow_val
coe_units_iff
pow_mul'
pow_mul
pow_eq_one
one_pow
dvd_of_pow_eq_one
zpow_natCast
Nat.gcd_eq_gcd_ab
zpow_add
mul_pow
zpow_mul
mul_right_comm
one_zpow
one_mul
pow_of_dvd πŸ“–mathematicalIsPrimitiveRootMonoid.toNatPow
CommMonoid.toMonoid
β€”eq_orderOf
orderOf_pow_of_dvd
orderOf
pow_of_prime πŸ“–mathematicalIsPrimitiveRoot
Nat.Prime
Monoid.toNatPow
CommMonoid.toMonoid
β€”pow_of_coprime
Nat.Prime.coprime_iff_not_dvd
pow_sub_one_eq πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.range
β€”eq_neg_iff_add_eq_zero
add_comm
Finset.sum_range_succ
pos_of_gt
Nat.instCanonicallyOrderedAdd
geom_sum_eq_zero
primitiveRootsPowEquivOfCoprime_apply_coe πŸ“–mathematicalβ€”Finset
SetLike.instMembership
Finset.instSetLike
primitiveRoots
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
primitiveRootsPowEquivOfCoprime
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”β€”
primitiveRootsPowEquiv_apply_coe πŸ“–mathematicalNat.ModEqFinset
SetLike.instMembership
Finset.instSetLike
primitiveRoots
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
primitiveRootsPowEquiv
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”β€”
primitiveRootsPowEquiv_symm_apply_coe πŸ“–mathematicalNat.ModEqFinset
SetLike.instMembership
Finset.instSetLike
primitiveRoots
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
primitiveRootsPowEquiv
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”β€”
primitiveRoots_one πŸ“–mathematicalβ€”primitiveRoots
Finset
Finset.instSingleton
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”Finset.eq_singleton_iff_unique_mem
mem_primitiveRoots
zero_lt_one
Nat.instZeroLEOneClass
one_right_iff
sub_one_ne_zero πŸ“–β€”IsPrimitiveRoot
CommRing.toCommMonoid
β€”β€”sub_ne_zero
ne_one
unique πŸ“–β€”IsPrimitiveRootβ€”β€”dvd_of_pow_eq_one
pow_eq_one
val_inv_toRootsOfUnity_coe πŸ“–mathematicalIsPrimitiveRootUnits.val
CommMonoid.toMonoid
Units
Units.instInv
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
toRootsOfUnity
Monoid.toNatPow
β€”inv_one
mul_one
val_toRootsOfUnity_coe πŸ“–mathematicalIsPrimitiveRootUnits.val
CommMonoid.toMonoid
Units
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
toRootsOfUnity
β€”β€”
zero πŸ“–mathematicalβ€”IsPrimitiveRoot
CommMonoidWithZero.toCommMonoid
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
β€”pow_zero
zero_pow_eq
NeZero.one
zmodEquivZPowers_apply_coe_int πŸ“–mathematicalIsPrimitiveRoot
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
CommGroup.toCommMonoid
Units.instCommGroupUnits
CommRing.toCommMonoid
DFunLike.coe
AddEquiv
ZMod
Additive
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
Additive.add
Subgroup.mul
EquivLike.toFunLike
AddEquiv.instEquivLike
zmodEquivZPowers
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
CommRing.toRing
Equiv
Equiv.instEquivLike
Additive.ofMul
DivInvMonoid.toZPow
Units.instDivInvMonoid
β€”ZMod.intCast_rightInverse
zmodEquivZPowers.eq_1
AddEquiv.ofBijective_apply
AddMonoidHom.liftOfRightInverse_comp_apply
zmodEquivZPowers_apply_coe_nat πŸ“–mathematicalIsPrimitiveRoot
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
CommGroup.toCommMonoid
Units.instCommGroupUnits
CommRing.toCommMonoid
DFunLike.coe
AddEquiv
ZMod
Additive
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
Additive.add
Subgroup.mul
EquivLike.toFunLike
AddEquiv.instEquivLike
zmodEquivZPowers
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Equiv
Equiv.instEquivLike
Additive.ofMul
Monoid.toNatPow
Units.instMonoid
β€”Int.cast_natCast
zpow_natCast
zmodEquivZPowers_apply_coe_int
zmodEquivZPowers_symm_apply_pow πŸ“–mathematicalIsPrimitiveRoot
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
CommGroup.toCommMonoid
Units.instCommGroupUnits
CommRing.toCommMonoid
DFunLike.coe
AddEquiv
Additive
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
ZMod
Additive.add
Subgroup.mul
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
zmodEquivZPowers
Equiv
Equiv.instEquivLike
Additive.ofMul
Monoid.toNatPow
Units.instMonoid
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”AddEquiv.symm_apply_apply
zmodEquivZPowers_apply_coe_nat
zmodEquivZPowers_symm_apply_pow' πŸ“–mathematicalIsPrimitiveRoot
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
CommGroup.toCommMonoid
Units.instCommGroupUnits
CommRing.toCommMonoid
DFunLike.coe
AddEquiv
Additive
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
ZMod
Additive.add
Subgroup.mul
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
zmodEquivZPowers
Monoid.toNatPow
Units.instMonoid
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”zmodEquivZPowers_symm_apply_pow
zmodEquivZPowers_symm_apply_zpow πŸ“–mathematicalIsPrimitiveRoot
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
CommGroup.toCommMonoid
Units.instCommGroupUnits
CommRing.toCommMonoid
DFunLike.coe
AddEquiv
Additive
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
ZMod
Additive.add
Subgroup.mul
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
zmodEquivZPowers
Equiv
Equiv.instEquivLike
Additive.ofMul
DivInvMonoid.toZPow
Units.instDivInvMonoid
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
CommRing.toRing
β€”AddEquiv.symm_apply_apply
zmodEquivZPowers_apply_coe_int
zmodEquivZPowers_symm_apply_zpow' πŸ“–mathematicalIsPrimitiveRoot
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
CommGroup.toCommMonoid
Units.instCommGroupUnits
CommRing.toCommMonoid
DFunLike.coe
AddEquiv
Additive
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
ZMod
Additive.add
Subgroup.mul
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
zmodEquivZPowers
DivInvMonoid.toZPow
Units.instDivInvMonoid
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
CommRing.toRing
β€”zmodEquivZPowers_symm_apply_zpow
zpow_eq_one πŸ“–mathematicalIsPrimitiveRoot
DivisionCommMonoid.toCommMonoid
DivInvMonoid.toZPow
DivisionMonoid.toDivInvMonoid
DivisionCommMonoid.toDivisionMonoid
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
β€”zpow_natCast
pow_eq_one
zpow_eq_one_iff_dvd πŸ“–mathematicalIsPrimitiveRoot
DivisionCommMonoid.toCommMonoid
DivInvMonoid.toZPow
DivisionMonoid.toDivInvMonoid
DivisionCommMonoid.toDivisionMonoid
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
β€”CanLift.prf
instCanLiftIntNatCastLeOfNat
zpow_natCast
pow_eq_one_iff_dvd
LT.lt.le
dvd_neg
zpow_neg
inv_one
zpow_of_gcd_eq_one πŸ“–mathematicalIsPrimitiveRoot
DivisionCommMonoid.toCommMonoid
DivInvMonoid.toZPow
DivisionMonoid.toDivInvMonoid
DivisionCommMonoid.toDivisionMonoid
β€”CanLift.prf
instCanLiftIntNatCastLeOfNat
zpow_natCast
pow_of_coprime
LT.lt.le
inv_iff
zpow_neg
zpowers_eq πŸ“–mathematicalIsPrimitiveRoot
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
CommGroup.toCommMonoid
Units.instCommGroupUnits
CommRing.toCommMonoid
Subgroup.zpowers
Units.instGroup
rootsOfUnity
β€”SetLike.coe_injective
Set.eq_of_subset_of_card_le
Subgroup.zpowers_le_of_mem
pow_eq_one
card_rootsOfUnity
ZMod.card
Fintype.card_congr

ZMod

Theorems

NameKindAssumesProvesValidatesDepends On
exists_monoidHom_apply_ne_one πŸ“–β€”IsPrimitiveRootβ€”β€”Nat.card_eq_fintype_card
Fintype.card_multiplicative
card
IsCyclic.exists_apply_ne_one
isCyclic_multiplicative
instIsAddCyclic
instFiniteMultiplicative
Finite.of_fintype
IsPrimitiveRoot.coe_units_iff

(root)

Definitions

NameCategoryTheorems
IsPrimitiveRoot πŸ“–CompData
39 mathmath: IsPrimitiveRoot.orderOf, IsPrimitiveRoot.inv_iff, Complex.isPrimitiveRoot_exp_rat, HasEnoughRootsOfUnity.prim, IsPrimitiveRoot.iff_def, isPrimitiveRoot_of_mem_rootsOfUnity, IsPrimitiveRoot.one, IsPrimitiveRoot.exists_pos, IsPrimitiveRoot.mk_of_lt, IsPrimitiveRoot.not_iff, Complex.isPrimitiveRoot_iff, IsCyclotomicExtension.exists_isPrimitiveRoot, Complex.isPrimitiveRoot_exp_of_isCoprime, Polynomial.isRoot_cyclotomic_iff_charZero, IsPrimitiveRoot.coe_units_iff, IsPrimitiveRoot.map_iff_of_injective, HasEnoughRootsOfUnity.exists_primitiveRoot, Complex.isPrimitiveRoot_exp_of_coprime, IsCyclotomicExtension.iff_singleton, Complex.isPrimitiveRoot_exp_rat_of_even_num, Complex.isPrimitiveRoot_exp, IsPrimitiveRoot.iff_orderOf, IsPrimitiveRoot.one_right_iff, IsPrimitiveRoot.coe_submonoidClass_iff, isCyclotomicExtension_iff, Complex.isPrimitiveRoot_exp_rat_of_odd_num, IsPrimitiveRoot.iff, mem_primitiveRoots, IsCyclotomicExtension.zeta_spec, IsPrimitiveRoot.zero, IsCyclotomicExtension.iff_adjoin_eq_top, IsPrimitiveRoot.neg_one, card_rootsOfUnity_eq_iff_exists_isPrimitiveRoot, isPrimitiveRoot_of_mem_primitiveRoots, IsPrimitiveRoot.of_subsingleton, IsPrimitiveRoot.existsUnique, Polynomial.isRoot_cyclotomic_prime_pow_mul_iff_of_charP, Polynomial.isPrimitiveRoot_of_mahlerMeasure_eq_one, Polynomial.isRoot_cyclotomic_iff
primitiveRoots πŸ“–CompOp
16 mathmath: IsPrimitiveRoot.nthRoots_one_eq_biUnion_primitiveRoots, IsPrimitiveRoot.is_roots_of_minpoly, Polynomial.cyclotomic_eq_prod_X_sub_primitiveRoots, Polynomial.cyclotomic.roots_to_finset_eq_primitiveRoots, IsPrimitiveRoot.primitiveRootsPowEquiv_symm_apply_coe, primitiveRoots_zero, IsPrimitiveRoot.disjoint, IsPrimitiveRoot.card_primitiveRoots, Polynomial.cyclotomic.roots_eq_primitiveRoots_val, IsPrimitiveRoot.primitiveRootsPowEquivOfCoprime_apply_coe, IsPrimitiveRoot.primitiveRootsPowEquiv_apply_coe, Complex.card_primitiveRoots, IsPrimitiveRoot.primitiveRoots_one, mem_primitiveRoots, IsPrimitiveRoot.embeddingsEquivPrimitiveRoots_apply_coe, Polynomial.roots_of_cyclotomic
rootsOfUnityEquivOfPrimitiveRoots πŸ“–CompOp
3 mathmath: rootsOfUnityEquivOfPrimitiveRoots_apply_coe_inv_val, val_rootsOfUnityEquivOfPrimitiveRoots_apply_coe, rootsOfUnityEquivOfPrimitiveRoots_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
card_rootsOfUnity_eq_iff_exists_isPrimitiveRoot πŸ“–mathematicalβ€”Fintype.card
Units
CommMonoid.toMonoid
CommRing.toCommMonoid
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
rootsOfUnity.fintype
IsPrimitiveRoot
β€”IsCyclic.exists_ofOrder_eq_natCard
rootsOfUnity.isCyclic
IsPrimitiveRoot.coe_units_iff
IsPrimitiveRoot.coe_submonoidClass_iff
IsPrimitiveRoot.iff_orderOf
Nat.card_eq_fintype_card
IsPrimitiveRoot.card_rootsOfUnity
isPrimitiveRoot_of_mem_primitiveRoots πŸ“–mathematicalFinset
Finset.instMembership
primitiveRoots
IsPrimitiveRoot
CommRing.toCommMonoid
β€”primitiveRoots.congr_simp
primitiveRoots_zero
mem_primitiveRoots
isPrimitiveRoot_of_mem_rootsOfUnity πŸ“–mathematicalUnits
CommMonoid.toMonoid
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
IsPrimitiveRoot
CommGroup.toCommMonoid
Units.instCommGroupUnits
β€”LT.lt.ne'
IsOfFinOrder.orderOf_pos
NeZero.pos
Nat.instCanonicallyOrderedAdd
isPeriodicPt_mul_iff_pow_eq_one
orderOf_dvd_of_pow_eq_one
IsPrimitiveRoot.orderOf
mem_primitiveRoots πŸ“–mathematicalβ€”Finset
Finset.instMembership
primitiveRoots
IsPrimitiveRoot
CommRing.toCommMonoid
β€”primitiveRoots.eq_1
Finset.mem_filter
Multiset.mem_toFinset
Polynomial.mem_nthRoots
IsPrimitiveRoot.pow_eq_one
primitiveRoots_zero πŸ“–mathematicalβ€”primitiveRoots
Finset
Finset.instEmptyCollection
β€”primitiveRoots.eq_1
Polynomial.nthRoots_zero
Multiset.toFinset_zero
Finset.filter_empty
rootsOfUnityEquivOfPrimitiveRoots_apply_coe_inv_val πŸ“–mathematicalDFunLike.coe
Finset.Nonempty
primitiveRoots
Units.inv_val
CommMonoid.toMonoid
CommRing.toCommMonoid
Units
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
MulEquiv
Subgroup.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
rootsOfUnityEquivOfPrimitiveRoots
MonoidHomClass.toMonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
Set
Set.instMembership
SetLike.coe
β€”Units.inv_val
rootsOfUnityEquivOfPrimitiveRoots_symm_apply πŸ“–mathematicalDFunLike.coe
Finset.Nonempty
primitiveRoots
Units.val
CommMonoid.toMonoid
CommRing.toCommMonoid
Units
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
MulEquiv
Subgroup.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
rootsOfUnityEquivOfPrimitiveRoots
β€”MulEquiv.surjective
MulEquiv.symm_apply_apply
val_rootsOfUnityEquivOfPrimitiveRoots_apply_coe
val_rootsOfUnityEquivOfPrimitiveRoots_apply_coe πŸ“–mathematicalDFunLike.coe
Finset.Nonempty
primitiveRoots
Units.val
CommMonoid.toMonoid
CommRing.toCommMonoid
Units
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
MulEquiv
Subgroup.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
rootsOfUnityEquivOfPrimitiveRoots
Set
Set.instMembership
SetLike.coe
β€”β€”

---

← Back to Index