Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/SimpleModule/Basic.lean

Statistics

MetricCount
DefinitionsIsSemisimpleModule, IsSemisimpleRing, IsSimpleModule, instJordanHolderLattice, instDivisionRing
5
Theoremsannihilator_isRadical, eq_bot_or_exists_simple_le, exists_linearEquiv_dfinsupp, exists_linearEquiv_fin_dfinsupp, exists_quotient_linearEquiv_submodule, exists_sSupIndep_sSup_simples_eq_top, exists_simple_submodule, exists_submodule_linearEquiv_quotient, extension_property, instIsNoetherianOfFinite, isCoatomic_submodule, lifting_property, of_injective, of_sSup_simples_eq_top, of_surjective, quotient, range, sSup_simples_eq_top, sSup_simples_le, submodule, sup, toComplementedLattice, exists_linearEquiv_ideal_of_isSimpleModule, ideal_eq_span_idempotent, isSemisimpleModule, annihilator_isMaximal, instIsNoetherian, instIsPrincipal, isAtom, ker_toSpanSingleton_isMaximal, nontrivial, span_singleton_eq_top, toIsSimpleOrder, toSpanSingleton_surjective, isSemisimpleModule_iff, isSimpleModule_iff, bijective_of_ne_zero, bijective_or_eq_zero, injective_of_ne_zero, injective_or_eq_zero, instIsSimpleModuleEndOfNontrivial, isCoatom_ker_of_surjective, isSemisimpleModule_iff_of_bijective, isSimpleModule_iff_of_bijective, linearEquiv_of_ne_zero, surjective_of_ne_zero, surjective_or_eq_zero, instLinearMapIdSubtypeMemSubmoduleOfIsSemisimpleModule, instLinearMapIdSubtypeMemSubmoduleOfIsSemisimpleModule_1, of_isComplemented_codomain, of_isComplemented_domain, toModuleEnd_moduleEnd_surjective, isSemisimpleRing, isSemisimpleRing_iff, isSemisimpleRing_of_surjective, covBy_iff_quot_is_simple, instIsPrincipalIdealRingOfIsSemisimpleRing, instIsSemisimpleModuleDFinsupp, instIsSemisimpleModuleFinsupp, instIsSemisimpleModuleForallOfFinite, instIsSemisimpleModuleOfIsSimpleModule, instIsSemisimpleRingForallOfFinite, instIsSemisimpleRingOfSubsingleton, instIsSemisimpleRingProd, instIsSimpleModule, isSemisimpleModule_biSup_of_isSemisimpleModule_submodule, isSemisimpleModule_iff, isSemisimpleModule_iff_exists_linearEquiv_dfinsupp, isSemisimpleModule_of_isSemisimpleModule_submodule, isSemisimpleModule_of_isSemisimpleModule_submodule', isSimpleModule_iff, isSimpleModule_iff_isAtom, isSimpleModule_iff_isCoatom, isSimpleModule_iff_quot_maximal, isSimpleModule_iff_toSpanSingleton_surjective, isSimpleModule_self_iff_isUnit, jacobson_density, sSup_simples_eq_top_iff_isSemisimpleModule
78
Total83

IsSemisimpleModule

Theorems

NameKindAssumesProvesValidatesDepends On
annihilator_isRadical πŸ“–mathematicalβ€”Ideal.IsRadical
CommRing.toCommSemiring
Module.annihilator
CommSemiring.toSemiring
AddCommGroup.toAddCommMonoid
β€”Submodule.annihilator_top
sSup_simples_eq_top
sSup_eq_iSup'
Submodule.annihilator_iSup
Ideal.isRadical_iInf
Ideal.IsPrime.isRadical
Ideal.IsMaximal.isPrime
IsSimpleModule.annihilator_isMaximal
eq_bot_or_exists_simple_le πŸ“–mathematicalβ€”Bot.bot
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instBot
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
IsSimpleModule
SetLike.instMembership
Submodule.setLike
Submodule.addCommGroup
Submodule.module
β€”Submodule.subsingleton_iff_eq_bot
Submodule.subsingleton_iff
subsingleton_iff_bot_eq_top
RingHomSurjective.ids
Submodule.map_subtype_le
IsSimpleModule.congr
RingHomSurjective.invPair
RingHomInvPair.ids
Submodule.subtype_injective
isSimpleModule_iff_isAtom
IsAtomic.eq_bot_or_exists_atom_le
isAtomic_of_complementedLattice
Submodule.instIsModularLattice
Submodule.instIsCompactlyGenerated
toComplementedLattice
exists_linearEquiv_dfinsupp πŸ“–mathematicalβ€”sSupIndep
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.completeLattice
IsSimpleModule
SetLike.instMembership
Submodule.setLike
Set
Set.instMembership
Submodule.addCommGroup
Submodule.module
β€”RingHomInvPair.ids
exists_sSupIndep_sSup_simples_eq_top
RingHomSurjective.invPair
AddMonoid.nat_smulCommClass'
RingHomCompTriple.ids
iSupIndep.dfinsupp_lsum_injective
sSupIndep_iff
RingHomSurjective.ids
Submodule.iSup_eq_range_dfinsupp_lsum
sSup_eq_iSup'
SetCoe.forall
exists_linearEquiv_fin_dfinsupp πŸ“–mathematicalβ€”IsSimpleModule
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.addCommGroup
Submodule.module
β€”RingHomInvPair.ids
exists_linearEquiv_dfinsupp
WellFoundedGT.finite_of_iSupIndep
wellFoundedGT
instIsNoetherianOfFinite
sSupIndep_iff
Submodule.nontrivial_iff_ne_bot
IsSimpleModule.nontrivial
RingHomCompTriple.ids
exists_quotient_linearEquiv_submodule πŸ“–mathematicalβ€”LinearEquiv
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Submodule
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
HasQuotient.Quotient
Submodule.hasQuotient
Submodule.addCommMonoid
Submodule.Quotient.addCommGroup
Submodule.module
Submodule.Quotient.module
β€”RingHomInvPair.ids
ComplementedLattice.exists_isCompl
toComplementedLattice
IsCompl.symm
exists_sSupIndep_sSup_simples_eq_top πŸ“–mathematicalβ€”sSupIndep
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.completeLattice
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Top.top
Submodule.instTop
IsSimpleModule
SetLike.instMembership
Submodule.setLike
Submodule.addCommGroup
Submodule.module
β€”sSup_simples_eq_top
exists_sSupIndep_of_sSup_atoms_eq_top
Submodule.instIsModularLattice
Submodule.instIsCompactlyGenerated
exists_simple_submodule πŸ“–mathematicalβ€”IsSimpleModule
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.addCommGroup
Submodule.module
β€”IsAtomic.exists_atom
Submodule.instNontrivial
isAtomic_of_complementedLattice
Submodule.instIsModularLattice
Submodule.instIsCompactlyGenerated
toComplementedLattice
exists_submodule_linearEquiv_quotient πŸ“–mathematicalβ€”LinearEquiv
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Submodule
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
HasQuotient.Quotient
Submodule.hasQuotient
Submodule.addCommMonoid
Submodule.Quotient.addCommGroup
Submodule.module
Submodule.Quotient.module
β€”RingHomInvPair.ids
ComplementedLattice.exists_isCompl
toComplementedLattice
extension_property πŸ“–mathematicalDFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
LinearMap.comp
RingHomCompTriple.ids
β€”RingHomSurjective.ids
RingHomCompTriple.ids
ComplementedLattice.exists_isCompl
toComplementedLattice
LinearMap.ext
LinearMap.linearProjOfIsCompl_apply_left
instIsNoetherianOfFinite πŸ“–mathematicalβ€”IsNoetherian
Ring.toSemiring
AddCommGroup.toAddCommMonoid
β€”RingHomInvPair.ids
exists_quotient_linearEquiv_submodule
Submodule.FG.of_finite
Module.Finite.equiv
Module.Finite.quotient
isCoatomic_submodule πŸ“–mathematicalβ€”IsCoatomic
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instPartialOrder
Submodule.instOrderTop
β€”isCoatomic_of_isAtomic_of_complementedLattice_of_isModular
Submodule.instIsModularLattice
toComplementedLattice
isAtomic_of_complementedLattice
Submodule.instIsCompactlyGenerated
lifting_property πŸ“–mathematicalDFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
LinearMap.comp
RingHomCompTriple.ids
β€”RingHomCompTriple.ids
ComplementedLattice.exists_isCompl
toComplementedLattice
RingHomInvPair.ids
LinearMap.ext
LinearEquiv.surjective
LinearEquiv.symm_apply_apply
of_injective πŸ“–mathematicalDFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
IsSemisimpleModuleβ€”congr
RingHomSurjective.invPair
RingHomInvPair.ids
submodule
RingHomCompTriple.ids
of_sSup_simples_eq_top πŸ“–mathematicalSupSet.sSup
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
setOf
IsSimpleModule
SetLike.instMembership
Submodule.setLike
Submodule.addCommGroup
Submodule.module
Top.top
Submodule.instTop
IsSemisimpleModuleβ€”complementedLattice_of_sSup_atoms_eq_top
Submodule.instIsModularLattice
Submodule.instIsCompactlyGenerated
of_surjective πŸ“–mathematicalDFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
IsSemisimpleModuleβ€”congr
quotient
RingHomInvPair.ids
quotient πŸ“–mathematicalβ€”IsSemisimpleModule
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
β€”RingHomInvPair.ids
exists_submodule_linearEquiv_quotient
congr
submodule
range πŸ“–mathematicalβ€”IsSemisimpleModule
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
LinearMap.range
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
Submodule.addCommGroup
Submodule.module
β€”congr
RingHomSurjective.ids
quotient
RingHomInvPair.ids
sSup_simples_eq_top πŸ“–mathematicalβ€”SupSet.sSup
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
setOf
IsSimpleModule
SetLike.instMembership
Submodule.setLike
Submodule.addCommGroup
Submodule.module
Top.top
Submodule.instTop
β€”sSup_atoms_eq_top
isAtomistic_of_complementedLattice
Submodule.instIsModularLattice
Submodule.instIsCompactlyGenerated
toComplementedLattice
sSup_simples_le πŸ“–mathematicalβ€”SupSet.sSup
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
setOf
IsSimpleModule
SetLike.instMembership
Submodule.setLike
Submodule.addCommGroup
Submodule.module
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
β€”sSup_atoms_le_eq
isAtomistic_of_complementedLattice
Submodule.instIsModularLattice
Submodule.instIsCompactlyGenerated
toComplementedLattice
submodule πŸ“–mathematicalβ€”IsSemisimpleModule
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.addCommGroup
Submodule.module
β€”OrderIso.complementedLattice_iff
IsModularLattice.complementedLattice_Iic
Submodule.instIsModularLattice
toComplementedLattice
sup πŸ“–mathematicalβ€”IsSemisimpleModule
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Submodule.addCommGroup
Submodule.module
β€”iSup_univ
iSup_bool_eq
isSemisimpleModule_biSup_of_isSemisimpleModule_submodule
toComplementedLattice πŸ“–mathematicalβ€”ComplementedLattice
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
CompleteLattice.toBoundedOrder
β€”β€”

IsSemisimpleRing

Theorems

NameKindAssumesProvesValidatesDepends On
exists_linearEquiv_ideal_of_isSimpleModule πŸ“–mathematicalβ€”LinearEquiv
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
AddCommGroup.toAddCommMonoid
Submodule.addCommMonoid
Submodule.module
β€”RingHomInvPair.ids
isSimpleModule_iff_quot_maximal
IsSemisimpleModule.exists_submodule_linearEquiv_quotient
RingHomCompTriple.ids
ideal_eq_span_idempotent πŸ“–mathematicalβ€”IsIdempotentElem
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Ideal.span
Ring.toSemiring
Set
Set.instSingletonSet
β€”ComplementedLattice.exists_isCompl
IsSemisimpleModule.toComplementedLattice
RingHomSurjective.ids
LinearMap.isIdempotentElem_map_one_iff
LinearMap.range_eq_map
Ideal.span_one
Ideal.submodule_span_eq
LinearMap.map_span
Set.image_one
isSemisimpleModule πŸ“–mathematicalβ€”IsSemisimpleModuleβ€”IsSemisimpleModule.congr
IsSemisimpleModule.quotient
instIsSemisimpleModuleFinsupp
RingHomInvPair.ids
Finsupp.linearCombination_id_surjective

IsSimpleModule

Theorems

NameKindAssumesProvesValidatesDepends On
annihilator_isMaximal πŸ“–mathematicalβ€”Ideal.IsMaximal
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.annihilator
AddCommGroup.toAddCommMonoid
β€”RingHomInvPair.ids
isSimpleModule_iff_quot_maximal
LinearEquiv.annihilator_eq
Ideal.annihilator_quotient
Ideal.instIsTwoSided_1
instIsNoetherian πŸ“–mathematicalβ€”IsNoetherian
Ring.toSemiring
AddCommGroup.toAddCommMonoid
β€”isNoetherian_iff'
Finite.to_wellFoundedGT
IsSimpleOrder.instFinite
toIsSimpleOrder
instIsPrincipal πŸ“–mathematicalβ€”Submodule.IsPrincipal
Ring.toSemiring
AddCommGroup.toAddCommMonoid
β€”IsSimpleOrder.eq_bot_or_eq_top
toIsSimpleOrder
Submodule.span_zero
nontrivial
exists_ne
span_singleton_eq_top
isAtom πŸ“–mathematicalβ€”IsAtom
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.instOrderBot
β€”isSimpleModule_iff_isAtom
ker_toSpanSingleton_isMaximal πŸ“–mathematicalβ€”Ideal.IsMaximal
Ring.toSemiring
LinearMap.ker
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
Semiring.toModule
RingHom.id
LinearMap.toSpanSingleton
β€”Ideal.isMaximal_def
isSimpleModule_iff_isCoatom
congr
toSpanSingleton_surjective
nontrivial πŸ“–mathematicalβ€”Nontrivialβ€”bot_ne_top
IsSimpleOrder.toNontrivial
toIsSimpleOrder
Mathlib.Tactic.Contrapose.contraposeβ‚‚
Submodule.ext
span_singleton_eq_top πŸ“–mathematicalβ€”Submodule.span
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instSingletonSet
Top.top
Submodule
Submodule.instTop
β€”IsSimpleOrder.eq_bot_or_eq_top
toIsSimpleOrder
Eq.le
Submodule.mem_span_singleton_self
toIsSimpleOrder πŸ“–mathematicalβ€”IsSimpleOrder
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
CompleteLattice.toBoundedOrder
Submodule.completeLattice
β€”β€”
toSpanSingleton_surjective πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddCommGroup.toAddCommMonoid
Semiring.toModule
LinearMap.instFunLike
LinearMap.toSpanSingleton
β€”RingHomSurjective.ids
LinearMap.range_eq_top
LinearMap.span_singleton_eq_range
span_singleton_eq_top

JordanHolderModule

Definitions

NameCategoryTheorems
instJordanHolderLattice πŸ“–CompOp
2 mathmath: isFiniteLength_iff_exists_compositionSeries, exists_compositionSeries_of_isNoetherian_isArtinian

LinearEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
isSemisimpleModule_iff πŸ“–mathematicalβ€”IsSemisimpleModuleβ€”RingHomInvPair.ids
IsSemisimpleModule.congr
isSimpleModule_iff πŸ“–mathematicalβ€”IsSimpleModuleβ€”RingHomInvPair.ids
IsSimpleModule.congr

LinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
bijective_of_ne_zero πŸ“–mathematicalβ€”Function.Bijective
DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instFunLike
β€”bijective_or_eq_zero
bijective_or_eq_zero πŸ“–mathematicalβ€”Function.Bijective
DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instFunLike
instZero
β€”injective_of_ne_zero
surjective_of_ne_zero
injective_of_ne_zero πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instFunLike
β€”injective_or_eq_zero
injective_or_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instFunLike
instZero
β€”ker_eq_bot
ker_eq_top
IsSimpleOrder.eq_bot_or_eq_top
IsSimpleModule.toIsSimpleOrder
instIsSimpleModuleEndOfNontrivial πŸ“–mathematicalβ€”IsSimpleModule
Module.End
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Module.End.instRing
Module.End.applyModule
β€”isSimpleModule_iff_toSpanSingleton_surjective
RingHomCompTriple.ids
IsSemisimpleModule.extension_property
IsSemisimpleRing.isSemisimpleModule
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
ker_eq_bot
ker_toSpanSingleton
DivisionRing.isDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
one_smul
isCoatom_ker_of_surjective πŸ“–mathematicalDFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instFunLike
IsCoatom
Submodule
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.instOrderTop
ker
β€”isSimpleModule_iff_isCoatom
IsSimpleModule.congr
isSemisimpleModule_iff_of_bijective πŸ“–mathematicalFunction.Bijective
DFunLike.coe
LinearMap
Ring.toSemiring
AddCommGroup.toAddCommMonoid
instFunLike
IsSemisimpleModuleβ€”OrderIso.complementedLattice_iff
isSimpleModule_iff_of_bijective πŸ“–mathematicalFunction.Bijective
DFunLike.coe
LinearMap
Ring.toSemiring
AddCommGroup.toAddCommMonoid
instFunLike
IsSimpleModuleβ€”OrderIso.isSimpleOrder_iff
linearEquiv_of_ne_zero πŸ“–mathematicalβ€”LinearEquiv
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Submodule
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
β€”RingHomCompTriple.ids
RingHomInvPair.ids
exists_ne_zero_of_sSup_eq_top
IsSemisimpleModule.sSup_simples_eq_top
bijective_or_eq_zero
surjective_of_ne_zero πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instFunLike
β€”surjective_or_eq_zero
surjective_or_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instFunLike
instZero
β€”RingHomSurjective.ids
range_eq_top
range_eq_bot
IsSimpleOrder.eq_bot_or_eq_top
IsSimpleModule.toIsSimpleOrder

Module.End

Definitions

NameCategoryTheorems
instDivisionRing πŸ“–CompOpβ€”

Module.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
instLinearMapIdSubtypeMemSubmoduleOfIsSemisimpleModule πŸ“–mathematicalβ€”Module.Finite
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Submodule
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
LinearMap.addCommMonoid
LinearMap.module
β€”of_isComplemented_domain
ComplementedLattice.exists_isCompl
IsSemisimpleModule.toComplementedLattice
instLinearMapIdSubtypeMemSubmoduleOfIsSemisimpleModule_1 πŸ“–mathematicalβ€”Module.Finite
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Submodule
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
LinearMap.addCommMonoid
LinearMap.module
Submodule.module'
SetLike.instSMulCommClassSubtypeMem_2
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.smulMemClass
β€”of_isComplemented_codomain
ComplementedLattice.exists_isCompl
IsSemisimpleModule.toComplementedLattice
of_isComplemented_codomain πŸ“–mathematicalIsComplemented
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
CompleteLattice.toBoundedOrder
Module.Finite
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
LinearMap.addCommMonoid
LinearMap.module
Submodule.module'
SetLike.instSMulCommClassSubtypeMem_2
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.smulMemClass
β€”of_surjective
SetLike.instSMulCommClassSubtypeMem_2
Submodule.smulMemClass
RingHomSurjective.ids
LinearMap.IsScalarTower.compatibleSMul
Submodule.isScalarTower'
IsScalarTower.left
LinearMap.surjective_comp_linearProjOfIsCompl
of_isComplemented_domain πŸ“–mathematicalIsComplemented
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
CompleteLattice.toBoundedOrder
Module.Finite
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
LinearMap.addCommMonoid
LinearMap.module
β€”of_surjective
RingHomSurjective.ids
LinearMap.surjective_comp_subtype_of_isComplemented
toModuleEnd_moduleEnd_surjective πŸ“–mathematicalβ€”Module.End
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Module.End.instSemiring
Module.End.applyModule
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Module.toModuleEnd
Module.End.apply_smulCommClass
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DistribSMul.toSMulZeroClass
instDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddCommMonoid.toAddMonoid
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
IsScalarTower.left
DistribMulAction.toMulAction
β€”Module.End.apply_smulCommClass
IsScalarTower.left
fg_top
jacobson_density
LinearMap.ext
Submodule.span_induction
smul_zero
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
smul_add
map_add
SemilinearMapClass.toAddHomClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
Eq.ge

RingEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
isSemisimpleRing πŸ“–mathematicalβ€”IsSemisimpleRingβ€”RingEquivClass.toRingHomClass
instRingEquivClass
RingHomInvPair.of_ringEquiv
RingHomInvPair.symm
OrderIso.complementedLattice
IsSemisimpleModule.toComplementedLattice
RingHomSurjective.instToRingHomRingEquiv
isSemisimpleRing_iff πŸ“–mathematicalβ€”IsSemisimpleRingβ€”isSemisimpleRing

RingHom

Theorems

NameKindAssumesProvesValidatesDepends On
isSemisimpleRing_of_surjective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
instFunLike
IsSemisimpleRingβ€”AddMonoidHom.map_add'
IsSemisimpleRing.eq_1
LinearMap.isSemisimpleModule_iff_of_bijective
Function.bijective_id
IsSemisimpleRing.isSemisimpleModule

(root)

Definitions

NameCategoryTheorems
IsSemisimpleModule πŸ“–CompData
24 mathmath: IsSemisimpleModule.submodule, Submodule.isSemisimple_torsionBy_of_irreducible, IsSemisimpleModule.of_injective, IsSemisimpleModule.sup, IsSemisimpleModule.of_sSup_simples_eq_top, Representation.isSemisimpleRepresentation_iff_isSemisimpleModule_asModule, isSemisimpleModule_iff, instIsSemisimpleModuleSubtypeMemSubmoduleIsotypicComponent, LinearMap.isSemisimpleModule_iff_of_bijective, IsSemisimpleRing.isSemisimpleModule, instIsSemisimpleModuleOfIsSimpleModule, IsSemisimpleModule.of_surjective, Module.IsTorsionBySet.isSemisimpleModule_iff, MonoidAlgebra.Submodule.instIsSemisimpleModule, instIsSemisimpleModuleSubtypeMemSubmoduleValSetIsotypicComponents, LinearEquiv.isSemisimpleModule_iff, IsArtinian.isSemisimpleModule_iff_jacobson, IsSemisimpleModule.congr, sSup_simples_eq_top_iff_isSemisimpleModule, IsSemisimpleModule.range, IsSemisimpleModule.quotient, instIsSemisimpleModuleFinsupp, Representation.isSemisimpleModule_iff_isSemisimpleRepresentation_ofModule, isSemisimpleModule_iff_exists_linearEquiv_dfinsupp
IsSemisimpleRing πŸ“–MathDef
19 mathmath: IsSimpleRing.tfae, isSemisimpleRing_iff_pi_matrix_divisionRing, IsSimpleRing.isSemisimpleRing_iff_isArtinianRing, instIsSemisimpleRingProd, IsArtinianRing.isSemisimpleRing_of_isReduced, IsSemisimpleRing.moduleEnd, IsSemiprimaryRing.isSemisimpleRing, IsSemisimpleRing.instMatrix, MonoidAlgebra.Submodule.instIsSemisimpleRingAddMonoidAlgebra, IsSemisimpleRing.instMulOpposite, isSimpleRing_isArtinianRing_iff, isSemisimpleRing_mulOpposite_iff, RingEquiv.isSemisimpleRing, isSemiprimaryRing_iff, IsSimpleRing.instIsSemisimpleRing, IsArtinianRing.isSemisimpleRing_iff_jacobson, RingHom.isSemisimpleRing_of_surjective, instIsSemisimpleRingOfSubsingleton, RingEquiv.isSemisimpleRing_iff
IsSimpleModule πŸ“–CompData
42 mathmath: IsIsotypic.linearEquiv_fun, Representation.IsIrreducible.instIsSimpleModuleMonoidAlgebraAsModule, covBy_iff_quot_is_simple, isSimpleModule_iff_isAtom, IsIsotypic.submodule_linearEquiv_fun, IsSemisimpleModule.exists_linearEquiv_fin_dfinsupp, isSimpleModule_self_iff_isUnit, simple_iff_isSimpleModule, IsSemisimpleRing.exists_algEquiv_pi_matrix_end_mulOpposite, LinearMap.isSimpleModule_iff_of_bijective, Representation.isSimpleModule_iff_irreducible_ofModule, RootPairing.isSimpleModule_weylGroupRootRep, RootPairing.isSimpleModule_weylGroupRootRep_iff, IsSemisimpleModule.sSup_simples_le, IsSemisimpleModule.exists_simple_submodule, Module.length_eq_one_iff, isSimpleModule_iff_quot_maximal, IsSemisimpleModule.sSup_simples_eq_top, instIsSimpleModule, isSimpleModule_iff, isSimpleModule_iff_finrank_eq_one, IsSemisimpleModule.exists_end_ringEquiv, IsSemisimpleModule.exists_end_algEquiv, IsSemisimpleRing.exists_ringEquiv_pi_matrix_end_mulOpposite, IsSemisimpleModule.exists_end_algEquiv_pi_matrix_end, Representation.irreducible_iff_isSimpleModule_asModule, IsSemisimpleModule.exists_sSupIndep_sSup_simples_eq_top, instIsSimpleModuleSubtypeMemSubmoduleValSetSetOfNonemptyLinearEquivId, isSimpleModule_iff_isCoatom, LinearEquiv.isSimpleModule_iff, isSimpleModule_iff_toSpanSingleton_surjective, IsIsotypic.linearEquiv_finsupp, IsSemisimpleModule.eq_bot_or_exists_simple_le, Representation.is_simple_module_iff_irreducible_ofModule, sSup_simples_eq_top_iff_isSemisimpleModule, IsSemisimpleModule.exists_linearEquiv_dfinsupp, simple_iff_isSimpleModule', isSimpleModule_of_simple, IsSemisimpleModule.exists_end_ringEquiv_pi_matrix_end, LinearMap.instIsSimpleModuleEndOfNontrivial, IsSimpleModule.congr, isSemisimpleModule_iff_exists_linearEquiv_dfinsupp

Theorems

NameKindAssumesProvesValidatesDepends On
covBy_iff_quot_is_simple πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
CovBy
Preorder.toLT
IsSimpleModule
HasQuotient.Quotient
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
Submodule.hasQuotient
Submodule.addCommGroup
Submodule.comap
RingHom.id
Semiring.toNonAssocSemiring
Submodule.subtype
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
β€”covBy_iff_coatom_Iic
isSimpleModule_iff_isCoatom
OrderIso.isCoatom_iff
RingHomSurjective.ids
Submodule.map_comap_subtype
inf_eq_right
instIsPrincipalIdealRingOfIsSemisimpleRing πŸ“–mathematicalβ€”IsPrincipalIdealRing
Ring.toSemiring
β€”IsSemisimpleRing.ideal_eq_span_idempotent
instIsSemisimpleModuleDFinsupp πŸ“–mathematicalIsSemisimpleModuleDFinsupp
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
DFinsupp.addCommGroup
DFinsupp.module
Ring.toSemiring
AddCommGroup.toAddCommMonoid
β€”isSemisimpleModule_of_isSemisimpleModule_submodule'
RingHomSurjective.ids
IsSemisimpleModule.range
DFinsupp.iSup_range_lsingle
instIsSemisimpleModuleFinsupp πŸ“–mathematicalβ€”IsSemisimpleModule
Finsupp
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Finsupp.instAddCommGroup
Finsupp.module
Ring.toSemiring
AddCommGroup.toAddCommMonoid
β€”isSemisimpleModule_of_isSemisimpleModule_submodule'
RingHomSurjective.ids
IsSemisimpleModule.congr
IsSemisimpleModule.quotient
RingHomInvPair.ids
Finsupp.iSup_lsingle_range
instIsSemisimpleModuleForallOfFinite πŸ“–mathematicalIsSemisimpleModulePi.addCommGroup
Pi.module
Ring.toSemiring
AddCommGroup.toAddCommMonoid
β€”isSemisimpleModule_of_isSemisimpleModule_submodule'
RingHomSurjective.ids
IsSemisimpleModule.range
LinearMap.range_eq_map
Submodule.iSup_map_single
Submodule.pi_top
instIsSemisimpleModuleOfIsSimpleModule πŸ“–mathematicalβ€”IsSemisimpleModuleβ€”IsSimpleOrder.instComplementedLattice
IsSimpleModule.toIsSimpleOrder
instIsSemisimpleRingForallOfFinite πŸ“–mathematicalIsSemisimpleRingPi.ringβ€”AddMonoidHom.map_add'
LinearMap.isSemisimpleModule_iff_of_bijective
instRingHomSurjectiveForallEvalRingHom
Function.bijective_id
instIsSemisimpleModuleForallOfFinite
instIsSemisimpleRingOfSubsingleton πŸ“–mathematicalβ€”IsSemisimpleRingβ€”isSemisimpleModule_iff
Subsingleton.instComplementedLattice
Unique.instSubsingleton
instIsSemisimpleRingProd πŸ“–mathematicalβ€”IsSemisimpleRing
Prod.instRing
β€”AddMonoidHom.map_add'
IsSemisimpleRing.eq_1
LinearMap.isSemisimpleModule_iff_of_bijective
RingHomInvPair.ids
RingHomSurjective.ids
LinearEquiv.bijective
LinearMap.sup_range_inl_inr
IsSemisimpleModule.sup
IsSemisimpleModule.range
RingHom.instRingHomSurjectiveProdFst
Function.bijective_id
RingHom.instRingHomSurjectiveProdSnd
instIsSimpleModule πŸ“–mathematicalβ€”IsSimpleModule
DivisionRing.toRing
Ring.toAddCommGroup
Semiring.toModule
Ring.toSemiring
β€”Ideal.isSimpleOrder
isSemisimpleModule_biSup_of_isSemisimpleModule_submodule πŸ“–mathematicalIsSemisimpleModule
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.addCommGroup
Submodule.module
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Set
Set.instMembership
β€”isSemisimpleModule_of_isSemisimpleModule_submodule
LinearEquiv.isSemisimpleModule_iff
Submodule.injective_subtype
RingHomSurjective.ids
Submodule.range_subtype
le_biSup
Submodule.biSup_comap_subtype_eq_top
isSemisimpleModule_iff πŸ“–mathematicalβ€”IsSemisimpleModule
ComplementedLattice
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
CompleteLattice.toBoundedOrder
β€”β€”
isSemisimpleModule_iff_exists_linearEquiv_dfinsupp πŸ“–mathematicalβ€”IsSemisimpleModule
IsSimpleModule
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Set
Set.instMembership
Submodule.addCommGroup
Submodule.module
β€”RingHomInvPair.ids
IsSemisimpleModule.exists_linearEquiv_dfinsupp
IsSemisimpleModule.congr
instIsSemisimpleModuleDFinsupp
instIsSemisimpleModuleOfIsSimpleModule
isSemisimpleModule_of_isSemisimpleModule_submodule πŸ“–β€”IsSemisimpleModule
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.addCommGroup
Submodule.module
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Set
Set.instMembership
Top.top
Submodule.instTop
β€”β€”complementedLattice_of_complementedLattice_Iic
Submodule.instIsModularLattice
Submodule.instIsCompactlyGenerated
OrderIso.complementedLattice_iff
isSemisimpleModule_of_isSemisimpleModule_submodule' πŸ“–β€”IsSemisimpleModule
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.addCommGroup
Submodule.module
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Top.top
Submodule.instTop
β€”β€”isSemisimpleModule_of_isSemisimpleModule_submodule
iSup_congr_Prop
iSup_pos
isSimpleModule_iff πŸ“–mathematicalβ€”IsSimpleModule
IsSimpleOrder
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
CompleteLattice.toBoundedOrder
Submodule.completeLattice
β€”β€”
isSimpleModule_iff_isAtom πŸ“–mathematicalβ€”IsSimpleModule
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.addCommGroup
Submodule.module
IsAtom
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.instOrderBot
β€”Set.isSimpleOrder_Iic_iff_isAtom
isSimpleModule_iff
OrderIso.isSimpleOrder_iff
isSimpleModule_iff_isCoatom πŸ“–mathematicalβ€”IsSimpleModule
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
IsCoatom
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.instOrderTop
β€”Set.isSimpleOrder_Ici_iff_isCoatom
isSimpleModule_iff
OrderIso.isSimpleOrder_iff
isSimpleModule_iff_quot_maximal πŸ“–mathematicalβ€”IsSimpleModule
Ideal.IsMaximal
Ring.toSemiring
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
HasQuotient.Quotient
Ideal
Submodule.hasQuotient
Ring.toAddCommGroup
Semiring.toModule
AddCommGroup.toAddCommMonoid
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
β€”RingHomInvPair.ids
IsSimpleModule.nontrivial
exists_ne
IsSimpleModule.ker_toSpanSingleton_isMaximal
IsSimpleModule.toSpanSingleton_surjective
IsSimpleModule.congr
isSimpleModule_iff_isCoatom
isSimpleModule_iff_toSpanSingleton_surjective πŸ“–mathematicalβ€”IsSimpleModule
Nontrivial
DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddCommGroup.toAddCommMonoid
Semiring.toModule
LinearMap.instFunLike
LinearMap.toSpanSingleton
β€”IsSimpleModule.nontrivial
IsSimpleModule.toSpanSingleton_surjective
isSimpleModule_iff
Submodule.instNontrivial
Submodule.ne_bot_iff
top_unique
Submodule.smul_mem
isSimpleModule_self_iff_isUnit πŸ“–mathematicalβ€”IsSimpleModule
Ring.toAddCommGroup
Semiring.toModule
Ring.toSemiring
Nontrivial
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”isSimpleModule_iff_toSpanSingleton_surjective
left_ne_zero_of_mul
one_ne_zero
NeZero.one
left_inv_eq_right_inv
Function.Bijective.surjective
Units.mulRight_bijective
jacobson_density πŸ“–mathematicalβ€”DFunLike.coe
Module.End
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Module.End.instSemiring
Module.End.applyModule
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”Finite.of_fintype
ComplementedLattice.exists_isCompl
IsSemisimpleModule.toComplementedLattice
instIsSemisimpleModuleFinsupp
Submodule.mem_span_singleton_self
Submodule.IsCompl.projection_apply_left
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
Module.End.smul_def
Submodule.IsCompl.projection_apply_mem
Submodule.mem_span_singleton
sSup_simples_eq_top_iff_isSemisimpleModule πŸ“–mathematicalβ€”SupSet.sSup
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
setOf
IsSimpleModule
SetLike.instMembership
Submodule.setLike
Submodule.addCommGroup
Submodule.module
Top.top
Submodule.instTop
IsSemisimpleModule
β€”IsSemisimpleModule.of_sSup_simples_eq_top
IsSemisimpleModule.sSup_simples_eq_top

---

← Back to Index