Documentation Verification Report

IsAlgClosed

📁 Source: Mathlib/RingTheory/SimpleModule/IsAlgClosed.lean

Statistics

MetricCount
DefinitionsIsAlgClosed
1
Theoremsexists_algEquiv_pi_matrix_of_isAlgClosed, exists_algEquiv_matrix_of_isAlgClosed
2
Total3

IsSemisimpleRing

Theorems

NameKindAssumesProvesValidatesDepends On
exists_algEquiv_pi_matrix_of_isAlgClosed 📖mathematicalMulZeroClass.toZero
Nat.instMulZeroClass
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
Ring.toSemiring
Pi.semiring
Matrix
Matrix.semiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Fin.fintype
Pi.algebra
Matrix.instAlgebra
Algebra.id
exists_algEquiv_pi_matrix_divisionRing_finite
IsAlgClosed.algebraMap_bijective_of_isIntegral
DivisionRing.isDomain
Algebra.IsAlgebraic.isIntegral
Algebra.IsAlgebraic.of_finite
IsLocalRing.toNontrivial
Field.instIsLocalRing

IsSimpleRing

Theorems

NameKindAssumesProvesValidatesDepends On
exists_algEquiv_matrix_of_isAlgClosed 📖mathematicalAlgEquiv
Matrix
Semifield.toCommSemiring
Field.toSemifield
Ring.toSemiring
Matrix.semiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Fin.fintype
Matrix.instAlgebra
Algebra.id
IsArtinianRing.of_finite
IsScalarTower.right
instIsArtinianOfIsSemisimpleModuleOfFinite
IsSemisimpleRing.isSemisimpleModule
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
FiniteDimensional.finiteDimensional_self
Module.Projective.of_free
Module.Free.self
exists_algEquiv_matrix_divisionRing_finite
IsAlgClosed.algebraMap_bijective_of_isIntegral
DivisionRing.isDomain
Algebra.IsAlgebraic.isIntegral
Algebra.IsAlgebraic.of_finite
IsLocalRing.toNontrivial
Field.instIsLocalRing

(root)

Definitions

NameCategoryTheorems
IsAlgClosed 📖CompData
9 mathmath: IsAlgClosed.of_ringEquiv, IsAlgClosure.isAlgClosed, IsSepClosed.isAlgClosed_of_perfectField, FirstOrder.Field.isAlgClosed_of_model_ACF, isAlgClosure_iff, IsAlgClosed.of_exists_root, AlgebraicClosure.isAlgClosed, IsAlgClosed.algebraicClosure_eq_bot_iff, Complex.isAlgClosed

---

← Back to Index