Documentation Verification Report

Isotypic

📁 Source: Mathlib/RingTheory/SimpleModule/Isotypic.lean

Statistics

MetricCount
DefinitionssetIsotypicComponents, IsIsotypic, IsIsotypicOfType, endAlgEquiv, endRingEquiv, setIsotypicComponents, IsFullyInvariant, fullyInvariantSubmodule, algEquiv, ringEquiv, isotypicComponent, isotypicComponents
12
TheoremsisotypicComponent, isotypicComponents, linearEquiv_finsupp, linearEquiv_fun, of_injective, of_self, of_subsingleton, submodule_linearEquiv_fun, isIsotypic, isotypicComponent, linearEquiv_finsupp, linearEquiv_fun, of_injective, of_isSimpleModule, of_isotypicComponent_eq_top, of_linearEquiv_type, of_subsingleton, isIsotypicOfType_iff, isIsotypicOfType_iff_type, isIsotypic_iff, isotypicComponent_eq, le_comap_isotypicComponent, setIsotypicComponents_apply, setIsotypicComponents_symm_apply, isotypicComponent, of_mem_isotypicComponents, le_isotypicComponent, le_linearEquiv_of_le_sSup, le_linearEquiv_of_sSup_eq_top, linearEquiv_of_le_sSup, linearEquiv_of_sSup_eq_top, map_le_isotypicComponent, bot_lt_isotypicComponent, bot_lt_isotypicComponents, eq_isotypicComponent_iff, eq_isotypicComponent_of_le, instFiniteElemSubmoduleIsotypicComponentsOfIsNoetherian, instIsSemisimpleModuleSubtypeMemSubmoduleIsotypicComponent, instIsSemisimpleModuleSubtypeMemSubmoduleValSetIsotypicComponents, instIsSimpleModuleSubtypeMemSubmoduleValSetSetOfNonemptyLinearEquivId, instNontrivialSubtypeMemSubmoduleValSetIsotypicComponents, isFullyInvariant_iff_isTwoSided, isFullyInvariant_iff_le_imp_isotypicComponent_le, isFullyInvariant_iff_sSup_isotypicComponents, isIsotypicOfType_submodule_iff, isIsotypic_iff_isFullyInvariant_imp_bot_or_top, isIsotypic_submodule_iff, isotypicComponent_eq_top_iff, le_isotypicComponent_iff, mem_fullyInvariantSubmodule_iff, mem_isotypicComponents_iff, sSupIndep_isotypicComponents, sSup_isotypicComponents
53
Total65

GaloisCoinsertion

Definitions

NameCategoryTheorems
setIsotypicComponents 📖CompOp

IsIsotypic

Theorems

NameKindAssumesProvesValidatesDepends On
isotypicComponent 📖mathematicalIsIsotypic
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
isotypicComponent
Submodule.addCommGroup
Submodule.module
IsIsotypicOfType.isIsotypic
IsIsotypicOfType.isotypicComponent
isotypicComponents 📖mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instMembership
isotypicComponents
IsIsotypic
SetLike.instMembership
Submodule.setLike
Submodule.addCommGroup
Submodule.module
isotypicComponent
linearEquiv_finsupp 📖mathematicalIsIsotypicIsSimpleModule
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.addCommGroup
Submodule.module
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Finsupp
Submodule.zero
Finsupp.instAddCommMonoid
Submodule.addCommMonoid
Finsupp.module
RingHomInvPair.ids
IsAtomic.exists_atom
Submodule.instNontrivial
isAtomic_of_complementedLattice
Submodule.instIsModularLattice
Submodule.instIsCompactlyGenerated
IsSemisimpleModule.toComplementedLattice
IsIsotypicOfType.linearEquiv_finsupp
isSimpleModule_iff_isAtom
isEmpty_or_nonempty
not_subsingleton
Equiv.subsingleton
Unique.instSubsingleton
linearEquiv_fun 📖mathematicalIsIsotypicIsSimpleModule
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.addCommGroup
Submodule.module
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Pi.addCommMonoid
Submodule.addCommMonoid
Pi.Function.module
RingHomInvPair.ids
IsAtomic.exists_atom
Submodule.instNontrivial
isAtomic_of_complementedLattice
Submodule.instIsModularLattice
Submodule.instIsCompactlyGenerated
IsSemisimpleModule.toComplementedLattice
IsIsotypicOfType.linearEquiv_fun
isSimpleModule_iff_isAtom
not_subsingleton
Equiv.subsingleton
Unique.instSubsingleton
Fin.isEmpty'
of_injective 📖IsIsotypic
DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
RingHomInvPair.ids
RingHomSurjective.invPair
IsSimpleModule.congr
IsIsotypicOfType.of_linearEquiv_type
RingHomSurjective.ids
IsIsotypicOfType.of_injective
of_self 📖IsIsotypic
Ring.toAddCommGroup
Semiring.toModule
Ring.toSemiring
RingHomInvPair.ids
IsSemisimpleRing.exists_linearEquiv_ideal_of_isSimpleModule
IsSimpleModule.congr
RingHomCompTriple.ids
of_subsingleton 📖mathematicalIsIsotypicIsIsotypicOfType.isIsotypic
IsIsotypicOfType.of_subsingleton
submodule_linearEquiv_fun 📖mathematicalIsIsotypic
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.addCommGroup
Submodule.module
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
IsSimpleModule
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Submodule.addCommMonoid
Pi.addCommMonoid
Pi.Function.module
RingHomInvPair.ids
linearEquiv_fun
IsSemisimpleModule.submodule
RingHomSurjective.invPair
Submodule.subtype_injective
RingHomSurjective.ids
Submodule.map_subtype_le
IsSimpleModule.congr
RingHomCompTriple.ids

IsIsotypicOfType

Theorems

NameKindAssumesProvesValidatesDepends On
isIsotypic 📖mathematicalIsIsotypicOfTypeIsIsotypicRingHomCompTriple.ids
isotypicComponent 📖mathematicalIsIsotypicOfType
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
isotypicComponent
Submodule.addCommGroup
Submodule.module
RingHomInvPair.ids
isIsotypicOfType_submodule_iff
Submodule.linearEquiv_of_le_sSup
instIsSimpleModuleSubtypeMemSubmoduleValSetSetOfNonemptyLinearEquivId
RingHomCompTriple.ids
linearEquiv_finsupp 📖mathematicalIsIsotypicOfTypeLinearEquiv
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Finsupp
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
AddCommGroup.toAddCommMonoid
Finsupp.instAddCommMonoid
Finsupp.module
RingHomInvPair.ids
IsSemisimpleModule.exists_linearEquiv_dfinsupp
RingHomCompTriple.ids
linearEquiv_fun 📖mathematicalIsIsotypicOfTypeLinearEquiv
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
Pi.addCommMonoid
Pi.Function.module
RingHomInvPair.ids
IsSemisimpleModule.exists_linearEquiv_fin_dfinsupp
RingHomCompTriple.ids
Finite.of_fintype
of_injective 📖IsIsotypicOfType
DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
RingHomInvPair.ids
RingHomSurjective.invPair
IsSimpleModule.congr
RingHomCompTriple.ids
RingHomSurjective.ids
of_isSimpleModule 📖mathematicalIsIsotypicOfTypeRingHomCompTriple.ids
RingHomInvPair.ids
isAtom_iff_eq_top
IsSimpleModule.toIsSimpleOrder
isSimpleModule_iff_isAtom
of_isotypicComponent_eq_top 📖mathematicalisotypicComponent
Top.top
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instTop
IsIsotypicOfTypeRingHomInvPair.ids
Submodule.linearEquiv_of_sSup_eq_top
instIsSimpleModuleSubtypeMemSubmoduleValSetSetOfNonemptyLinearEquivId
RingHomCompTriple.ids
of_linearEquiv_type 📖IsIsotypicOfTypeRingHomInvPair.ids
RingHomCompTriple.ids
of_subsingleton 📖mathematicalIsIsotypicOfTypeIsSimpleModule.nontrivial
not_subsingleton
Function.Injective.subsingleton
Submodule.subtype_injective

IsSemisimpleModule

Definitions

NameCategoryTheorems
endAlgEquiv 📖CompOp
endRingEquiv 📖CompOp

LinearEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
isIsotypicOfType_iff 📖mathematicalIsIsotypicOfTypeRingHomInvPair.ids
IsIsotypicOfType.of_injective
injective
isIsotypicOfType_iff_type 📖mathematicalIsIsotypicOfTypeRingHomInvPair.ids
IsIsotypicOfType.of_linearEquiv_type
isIsotypic_iff 📖mathematicalIsIsotypicRingHomInvPair.ids
IsIsotypic.of_injective
injective
isotypicComponent_eq 📖mathematicalisotypicComponentRingHomInvPair.ids
Set.ext
Nonempty.congr
RingHomCompTriple.ids

LinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
le_comap_isotypicComponent 📖mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
isotypicComponent
Submodule.comap
RingHom.id
Semiring.toNonAssocSemiring
sSup_le
RingHomSurjective.ids
Submodule.map_le_iff_le_comap
IsSimpleModule.congr
LE.le.trans_eq
Submodule.map_le_isotypicComponent
LinearEquiv.isotypicComponent_eq

OrderIso

Definitions

NameCategoryTheorems
setIsotypicComponents 📖CompOp
2 mathmath: setIsotypicComponents_apply, setIsotypicComponents_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
setIsotypicComponents_apply 📖mathematicalDFunLike.coe
RelIso
Set
Set.Elem
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
isotypicComponents
CompleteSublattice
Submodule.completeLattice
SetLike.instMembership
CompleteSublattice.instSetLike
fullyInvariantSubmodule
Set.instLE
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
RelIso.instFunLike
setIsotypicComponents
iSup
CompleteSublattice.instSupSet
Set.instMembership
setIsotypicComponents_symm_apply 📖mathematicalDFunLike.coe
RelIso
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
CompleteSublattice
Submodule.completeLattice
SetLike.instMembership
CompleteSublattice.instSetLike
fullyInvariantSubmodule
Set
Set.Elem
isotypicComponents
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Set.instLE
RelIso.instFunLike
RelIso.symm
setIsotypicComponents
setOf
Set.instMembership

Submodule

Definitions

NameCategoryTheorems
IsFullyInvariant 📖MathDef
8 mathmath: isFullyInvariant_iff_sSup_isotypicComponents, eq_isotypicComponent_iff, IsFullyInvariant.isotypicComponent, mem_fullyInvariantSubmodule_iff, mem_isotypicComponents_iff, IsFullyInvariant.of_mem_isotypicComponents, isFullyInvariant_iff_isTwoSided, isFullyInvariant_iff_le_imp_isotypicComponent_le

Theorems

NameKindAssumesProvesValidatesDepends On
le_isotypicComponent 📖mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
isotypicComponent
SetLike.instMembership
setLike
addCommGroup
module
le_sSup
le_linearEquiv_of_le_sSup 📖mathematicalIsSemisimpleModule
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
setLike
Set
Set.instMembership
addCommGroup
module
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
addCommMonoid
RingHomInvPair.ids
RingHomSurjective.invPair
sSup_eq_iSup
inclusion_injective
IsSimpleModule.congr
isSemisimpleModule_biSup_of_isSemisimpleModule_submodule
RingHomSurjective.ids
le_linearEquiv_of_sSup_eq_top
sSup_image
biSup_comap_subtype_eq_top
map_le_iff_le_comap
RingHomCompTriple.ids
subtype_injective
le_linearEquiv_of_sSup_eq_top 📖mathematicalSupSet.sSup
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
Top.top
instTop
Set
Set.instMembership
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
SetLike.instMembership
setLike
addCommMonoid
module
IsSimpleModule.nontrivial
RingHomInvPair.ids
ComplementedLattice.exists_isCompl
IsSemisimpleModule.toComplementedLattice
RingHomCompTriple.ids
LinearMap.exists_ne_zero_of_sSup_eq_top
LinearMap.ne_zero_of_surjective
linearProjOfIsCompl_surjective
LinearMap.linearEquiv_of_ne_zero
IsSemisimpleModule.submodule
RingHomSurjective.ids
map_subtype_le
subtype_injective
linearEquiv_of_le_sSup 📖mathematicalIsSimpleModule
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
setLike
Set
Set.instMembership
addCommGroup
module
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
addCommMonoid
RingHomInvPair.ids
le_linearEquiv_of_le_sSup
instIsSemisimpleModuleOfIsSimpleModule
isSimpleModule_iff_isAtom
IsSimpleModule.congr
IsAtom.le_iff_eq
RingHomCompTriple.ids
linearEquiv_of_sSup_eq_top 📖mathematicalIsSimpleModule
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
setLike
Set
Set.instMembership
addCommGroup
module
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
Top.top
instTop
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
addCommMonoid
isSemisimpleModule_of_isSemisimpleModule_submodule'
instIsSemisimpleModuleOfIsSimpleModule
sSup_eq_iSup'
RingHomInvPair.ids
le_linearEquiv_of_sSup_eq_top
isSimpleModule_iff_isAtom
IsSimpleModule.congr
IsAtom.le_iff_eq
RingHomCompTriple.ids
map_le_isotypicComponent 📖mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
isotypicComponent
SetLike.instMembership
setLike
addCommGroup
module
RingHomSurjective.ids
RingHomCompTriple.ids
range_subtype
LinearMap.range_comp
LinearMap.injective_or_eq_zero
le_sSup
LinearMap.range.congr_simp
LinearMap.range_zero

Submodule.IsFullyInvariant

Theorems

NameKindAssumesProvesValidatesDepends On
isotypicComponent 📖mathematicalSubmodule.IsFullyInvariant
Ring.toSemiring
AddCommGroup.toAddCommMonoid
isotypicComponent
LinearMap.le_comap_isotypicComponent
of_mem_isotypicComponents 📖mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instMembership
isotypicComponents
Submodule.IsFullyInvariantisotypicComponent

(root)

Definitions

NameCategoryTheorems
IsIsotypic 📖MathDef
10 mathmath: IsIsotypic.isotypicComponents, IsIsotypicOfType.isIsotypic, isIsotypic_submodule_iff, IsIsotypic.isotypicComponent, IsIsotypic.of_subsingleton, LinearEquiv.isIsotypic_iff, mem_isotypicComponents_iff, isSimpleRing_isArtinianRing_iff, isIsotypic_iff_isFullyInvariant_imp_bot_or_top, IsSimpleRing.isIsotypic
IsIsotypicOfType 📖MathDef
11 mathmath: isIsotypicOfType_submodule_iff, eq_isotypicComponent_iff, isotypicComponent_eq_top_iff, isIsotypic_submodule_iff, LinearEquiv.isIsotypicOfType_iff_type, IsIsotypicOfType.of_isotypicComponent_eq_top, IsIsotypicOfType.of_subsingleton, LinearEquiv.isIsotypicOfType_iff, IsIsotypicOfType.of_isSimpleModule, le_isotypicComponent_iff, IsIsotypicOfType.isotypicComponent
fullyInvariantSubmodule 📖CompOp
3 mathmath: OrderIso.setIsotypicComponents_apply, mem_fullyInvariantSubmodule_iff, OrderIso.setIsotypicComponents_symm_apply
isotypicComponent 📖CompOp
14 mathmath: bot_lt_isotypicComponent, eq_isotypicComponent_iff, isotypicComponent_eq_top_iff, eq_isotypicComponent_of_le, Submodule.IsFullyInvariant.isotypicComponent, IsIsotypic.isotypicComponent, instIsSemisimpleModuleSubtypeMemSubmoduleIsotypicComponent, Submodule.le_isotypicComponent, Submodule.map_le_isotypicComponent, le_isotypicComponent_iff, LinearMap.le_comap_isotypicComponent, isFullyInvariant_iff_le_imp_isotypicComponent_le, IsIsotypicOfType.isotypicComponent, LinearEquiv.isotypicComponent_eq
isotypicComponents 📖CompOp
9 mathmath: isFullyInvariant_iff_sSup_isotypicComponents, OrderIso.setIsotypicComponents_apply, sSup_isotypicComponents, sSupIndep_isotypicComponents, mem_isotypicComponents_iff, instFiniteElemSubmoduleIsotypicComponentsOfIsNoetherian, instIsSemisimpleModuleSubtypeMemSubmoduleValSetIsotypicComponents, instNontrivialSubtypeMemSubmoduleValSetIsotypicComponents, OrderIso.setIsotypicComponents_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
bot_lt_isotypicComponent 📖mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
Bot.bot
Submodule.instBot
isotypicComponent
SetLike.instMembership
Submodule.setLike
Submodule.addCommGroup
Submodule.module
LT.lt.trans_le
bot_lt_iff_ne_bot
Submodule.nontrivial_iff_ne_bot
IsSimpleModule.nontrivial
Submodule.le_isotypicComponent
bot_lt_isotypicComponents 📖mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instMembership
isotypicComponents
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
Bot.bot
Submodule.instBot
bot_lt_isotypicComponent
eq_isotypicComponent_iff 📖mathematicalisotypicComponent
IsIsotypicOfType
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.addCommGroup
Submodule.module
Submodule.IsFullyInvariant
IsIsotypicOfType.isotypicComponent
Submodule.IsFullyInvariant.isotypicComponent
LE.le.antisymm
le_isotypicComponent_iff
IsSemisimpleModule.eq_bot_or_exists_simple_le
IsSemisimpleModule.submodule
Eq.trans_le
LinearEquiv.isotypicComponent_eq
RingHomInvPair.ids
isIsotypicOfType_submodule_iff
isFullyInvariant_iff_le_imp_isotypicComponent_le
eq_isotypicComponent_of_le 📖mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instMembership
isotypicComponents
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
isotypicComponent
SetLike.instMembership
Submodule.setLike
Submodule.addCommGroup
Submodule.module
RingHomInvPair.ids
isIsotypicOfType_submodule_iff
IsIsotypicOfType.isotypicComponent
LinearEquiv.isotypicComponent_eq
instFiniteElemSubmoduleIsotypicComponentsOfIsNoetherian 📖mathematicalFinite
Set.Elem
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
isotypicComponents
Set.finite_coe_iff
WellFoundedGT.finite_of_sSupIndep
wellFoundedGT
sSupIndep_isotypicComponents
instIsSemisimpleModuleSubtypeMemSubmoduleIsotypicComponent 📖mathematicalIsSemisimpleModule
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
isotypicComponent
Submodule.addCommGroup
Submodule.module
isotypicComponent.eq_1
sSup_eq_iSup
isSemisimpleModule_biSup_of_isSemisimpleModule_submodule
IsSemisimpleModule.congr
instIsSemisimpleModuleSubtypeMemSubmoduleValSetIsotypicComponents 📖mathematicalIsSemisimpleModule
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Set
Set.instMembership
isotypicComponents
Submodule.addCommGroup
Submodule.module
instIsSemisimpleModuleSubtypeMemSubmoduleIsotypicComponent
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModuleSubtypeMemSubmoduleValSetSetOfNonemptyLinearEquivId 📖mathematicalIsSimpleModule
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Set
Set.instMembership
setOf
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Submodule.addCommMonoid
Submodule.module
Submodule.addCommGroup
RingHomInvPair.ids
IsSimpleModule.congr
instNontrivialSubtypeMemSubmoduleValSetIsotypicComponents 📖mathematicalNontrivial
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Set
Set.instMembership
isotypicComponents
Submodule.nontrivial_iff_ne_bot
LT.lt.ne'
bot_lt_isotypicComponents
isFullyInvariant_iff_isTwoSided 📖mathematicalSubmodule.IsFullyInvariant
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.IsTwoSided
instIsConcreteLE
Equiv.forall_congr_right
Ideal.isTwoSided_iff
isFullyInvariant_iff_le_imp_isotypicComponent_le 📖mathematicalSubmodule.IsFullyInvariant
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
isotypicComponent
SetLike.instMembership
Submodule.setLike
Submodule.addCommGroup
Submodule.module
sSup_le
RingHomCompTriple.ids
IsSemisimpleModule.extension_property
Submodule.subtype_injective
le_trans
RingHomSurjective.ids
Submodule.range_subtype
LinearMap.range_comp
LinearEquiv.range_comp
le_refl
Submodule.map_le_iff_le_comap
LE.le.trans
Eq.ge
IsSemisimpleModule.sSup_simples_le
Submodule.map_le_isotypicComponent
isFullyInvariant_iff_sSup_isotypicComponents 📖mathematicalSubmodule.IsFullyInvariant
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Set
Submodule
Set.instHasSubset
isotypicComponents
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
sSup_image
CompleteSublattice.coe_iSup
iSup_congr_Prop
Equiv.right_inv
CompleteSublattice.sSupClosed
Submodule.IsFullyInvariant.of_mem_isotypicComponents
isIsotypicOfType_submodule_iff 📖mathematicalIsIsotypicOfType
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.addCommGroup
Submodule.module
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Submodule.addCommMonoid
RingHomInvPair.ids
Subtype.forall'
Equiv.forall_congr_right
RingHomSurjective.invPair
Submodule.subtype_injective
RingHomSurjective.ids
Submodule.map_subtype_le
LinearEquiv.isSimpleModule_iff
RingHomCompTriple.ids
isIsotypic_iff_isFullyInvariant_imp_bot_or_top 📖mathematicalIsIsotypic
Bot.bot
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instBot
Top.top
Submodule.instTop
top_unique
LE.le.trans
Eq.ge
isotypicComponent_eq_top_iff
isFullyInvariant_iff_le_imp_isotypicComponent_le
IsSemisimpleModule.eq_bot_or_exists_simple_le
IsSemisimpleModule.submodule
Submodule.IsFullyInvariant.isotypicComponent
LT.lt.ne'
bot_lt_isotypicComponent
isIsotypic_submodule_iff 📖mathematicalIsIsotypic
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.addCommGroup
Submodule.module
IsIsotypicOfType
Subtype.forall'
Equiv.forall_congr_right
RingHomInvPair.ids
RingHomSurjective.invPair
Submodule.subtype_injective
RingHomSurjective.ids
Submodule.map_subtype_le
LinearEquiv.isSimpleModule_iff
LinearEquiv.isIsotypicOfType_iff_type
isotypicComponent_eq_top_iff 📖mathematicalisotypicComponent
Top.top
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instTop
IsIsotypicOfType
top_le_iff
le_isotypicComponent_iff
LinearEquiv.isIsotypicOfType_iff
le_isotypicComponent_iff 📖mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
isotypicComponent
IsIsotypicOfType
SetLike.instMembership
Submodule.setLike
Submodule.addCommGroup
Submodule.module
IsIsotypicOfType.of_injective
IsIsotypicOfType.isotypicComponent
Submodule.inclusion_injective
LE.le.trans
Eq.ge
IsSemisimpleModule.sSup_simples_le
sSup_le_sSup
RingHomInvPair.ids
isIsotypicOfType_submodule_iff
mem_fullyInvariantSubmodule_iff 📖mathematicalSubmodule
CompleteSublattice
Submodule.completeLattice
SetLike.instMembership
CompleteSublattice.instSetLike
fullyInvariantSubmodule
Submodule.IsFullyInvariant
mem_isotypicComponents_iff 📖mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instMembership
isotypicComponents
IsIsotypic
SetLike.instMembership
Submodule.setLike
Submodule.addCommGroup
Submodule.module
Submodule.IsFullyInvariant
IsIsotypic.isotypicComponent
Submodule.IsFullyInvariant.isotypicComponent
LT.lt.ne'
bot_lt_isotypicComponent
IsSemisimpleModule.eq_bot_or_exists_simple_le
IsSemisimpleModule.submodule
eq_isotypicComponent_iff
isIsotypic_submodule_iff
sSupIndep_isotypicComponents 📖mathematicalsSupIndep
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.completeLattice
isotypicComponents
disjoint_iff
of_not_not
instIsSemisimpleModuleSubtypeMemSubmoduleIsotypicComponent
instIsSemisimpleModuleOfIsSimpleModule
IsSemisimpleModule.of_injective
inf_le_left
Submodule.inclusion_injective
IsSemisimpleModule.eq_bot_or_exists_simple_le
RingHomInvPair.ids
Submodule.le_linearEquiv_of_le_sSup
LE.le.trans
inf_le_right
IsSimpleModule.congr
eq_isotypicComponent_of_le
LinearEquiv.isotypicComponent_eq
sSup_isotypicComponents 📖mathematicalSupSet.sSup
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
isotypicComponents
Top.top
Submodule.instTop
isFullyInvariant_iff_sSup_isotypicComponents
CompleteSublattice.top_mem
top_unique
LE.le.trans
Eq.le
sSup_le_sSup

iSupIndep

Definitions

NameCategoryTheorems
algEquiv 📖CompOp
ringEquiv 📖CompOp

---

← Back to Index