Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/SimpleRing/Basic.lean

Statistics

MetricCount
Definitions0
TheoremsisSimpleRing, iff_injective_ringHom, iff_injective_ringHom_or_subsingleton_codomain, injective_ringHom_or_subsingleton_codomain, instMulOpposite, instNontrivial, of_eq_bot_or_eq_top, one_mem_of_ne_bot, one_mem_of_ne_zero_mem, injective
10
Total10

DivisionRing

Theorems

NameKindAssumesProvesValidatesDepends On
isSimpleRing πŸ“–mathematicalβ€”IsSimpleRing
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
toRing
β€”IsSimpleRing.of_eq_bot_or_eq_top
toNontrivial
TwoSidedIdeal.one_mem_iff
SetLike.exists_of_lt
instIsConcreteLE
bot_lt_iff_ne_bot
inv_mul_cancelβ‚€
TwoSidedIdeal.mul_mem_left

IsSimpleRing

Theorems

NameKindAssumesProvesValidatesDepends On
iff_injective_ringHom πŸ“–mathematicalβ€”IsSimpleRing
NonAssocRing.toNonUnitalNonAssocRing
DFunLike.coe
RingHom
NonAssocRing.toNonAssocSemiring
RingHom.instFunLike
β€”iff_injective_ringHom_or_subsingleton_codomain
subsingleton_or_nontrivial
iff_injective_ringHom_or_subsingleton_codomain πŸ“–mathematicalβ€”IsSimpleRing
NonAssocRing.toNonUnitalNonAssocRing
DFunLike.coe
RingHom
NonAssocRing.toNonAssocSemiring
RingHom.instFunLike
β€”injective_ringHom_or_subsingleton_codomain
of_eq_bot_or_eq_top
le_antisymm
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
TwoSidedIdeal.ker_ringCon_mk'
TwoSidedIdeal.ker_eq_bot
bot_le
le_top
TwoSidedIdeal.mem_iff
Quotient.eq'
injective_ringHom_or_subsingleton_codomain πŸ“–mathematicalβ€”DFunLike.coe
RingHom
NonAssocRing.toNonAssocSemiring
RingHom.instFunLike
β€”RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
TwoSidedIdeal.ker_eq_bot
subsingleton_iff_zero_eq_one
TwoSidedIdeal.mem_top
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
TwoSidedIdeal.mem_ker
IsSimpleOrder.eq_bot_or_eq_top
simple
instMulOpposite πŸ“–mathematicalβ€”IsSimpleRing
MulOpposite
MulOpposite.instNonUnitalNonAssocRing
β€”OrderIso.isSimpleOrder
simple
instNontrivial πŸ“–mathematicalβ€”Nontrivialβ€”SetLike.exists_of_lt
instIsConcreteLE
bot_lt_top
IsSimpleOrder.toNontrivial
simple
of_eq_bot_or_eq_top πŸ“–mathematicalBot.bot
TwoSidedIdeal
TwoSidedIdeal.instBot
Top.top
TwoSidedIdeal.instTop
IsSimpleRingβ€”TwoSidedIdeal.instNontrivial
one_mem_of_ne_bot πŸ“–mathematicalβ€”TwoSidedIdeal
NonAssocRing.toNonUnitalNonAssocRing
SetLike.instMembership
TwoSidedIdeal.setLike
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
β€”IsSimpleOrder.eq_bot_or_eq_top
simple
one_mem_of_ne_zero_mem πŸ“–mathematicalTwoSidedIdeal
NonAssocRing.toNonUnitalNonAssocRing
SetLike.instMembership
TwoSidedIdeal.setLike
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
β€”one_mem_of_ne_bot

RingHom

Theorems

NameKindAssumesProvesValidatesDepends On
injective πŸ“–mathematicalβ€”DFunLike.coe
RingHom
NonAssocRing.toNonAssocSemiring
instFunLike
β€”IsSimpleRing.injective_ringHom_or_subsingleton_codomain
not_subsingleton

---

← Back to Index