Documentation Verification Report

Field

📁 Source: Mathlib/RingTheory/SimpleRing/Field.lean

Statistics

MetricCount
Definitions0
TheoremsisField_center, isSimpleRing_iff_isField
2
Total2

IsSimpleRing

Theorems

NameKindAssumesProvesValidatesDepends On
isField_center 📖mathematicalIsField
Subring
SetLike.instMembership
Subring.instSetLike
Subring.center
CommSemiring.toSemiring
CommRing.toCommSemiring
Subring.instCommRingSubtypeMemCenter
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
SubringClass.toSubsemiringClass
Subring.instSubringClass
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
zero_ne_one
NeZero.one
Subring.instNontrivialSubtypeMem
instNontrivial
mul_comm
MulZeroClass.mul_zero
mul_add
Distrib.leftDistribClass
mul_neg
mul_assoc
Subring.mem_center_iff
one_mem_of_ne_zero_mem
mul_one
one_mul

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
isSimpleRing_iff_isField 📖mathematicalIsSimpleRing
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsField
CommSemiring.toSemiring
CommRing.toCommSemiring
MulEquiv.isField
SubringClass.toSubsemiringClass
Subring.instSubringClass
Subring.center_eq_top
IsSimpleRing.isField_center
DivisionRing.isSimpleRing

---

← Back to Index