Documentation Verification Report

AdicCompletion

šŸ“ Source: Mathlib/RingTheory/Smooth/AdicCompletion.lean

Statistics

MetricCount
DefinitionsAdicCompletion
1
Theoremsexists_adicCompletionEvalOneₐ_comp_eq, exists_kerProj_comp_eq_id, exists_mkₐ_comp_eq_of_isAdicComplete
3
Total4

Algebra.FormallySmooth

Theorems

NameKindAssumesProvesValidatesDepends On
exists_adicCompletionEvalOneₐ_comp_eq šŸ“–mathematical—AlgHom.comp
AdicCompletion
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
HasQuotient.Quotient
Ideal
Ideal.instHasQuotient_1
AdicCompletion.instCommRing
Ideal.Quotient.semiring
AdicCompletion.instAlgebra
Ideal.instAlgebraQuotient
AlgHom.restrictScalars
Algebra.id
AdicCompletion.instIsScalarTower
Algebra.toSMul
IsScalarTower.right
Ideal.Quotient.isScalarTower
AdicCompletion.evalOneₐ
—AdicCompletion.instIsScalarTower
IsScalarTower.right
Ideal.Quotient.isScalarTower
AlgHom.ext
Ideal.instIsTwoSided_1
AdicCompletion.evalOneₐ_liftAlgHom
le_of_eq
LE.le.trans
Ideal.Quotient.factor_comp_apply
Ideal.Quotient.factor_eq
exists_kerProj_comp_eq_id šŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
AlgHom.comp
AdicCompletion
RingHom.ker
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
AdicCompletion.instCommRing
AdicCompletion.instAlgebra
AdicCompletion.kerProj
AlgHom.id
—AlgHomClass.toRingHomClass
AlgHom.algHomClass
AdicCompletion.instIsScalarTower
IsScalarTower.right
Ideal.Quotient.isScalarTower
RingHom.instIsTwoSidedKer
exists_adicCompletionEvalOneₐ_comp_eq
AlgHom.ext
AlgEquiv.apply_symm_apply
exists_mkₐ_comp_eq_of_isAdicComplete šŸ“–mathematical—AlgHom.comp
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
CommRing.toCommSemiring
CommSemiring.toSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
Ideal.Quotient.algebra
Ideal.Quotient.mkₐ
—AdicCompletion.instIsScalarTower
IsScalarTower.right
Ideal.Quotient.isScalarTower
Ideal.instIsTwoSided_1
exists_adicCompletionEvalOneₐ_comp_eq
AlgHom.ext
AdicCompletion.mk_ofAlgEquiv_symm_eq_evalOneₐ

(root)

Definitions

NameCategoryTheorems
AdicCompletion šŸ“–CompOp
113 mathmath: AdicCompletion.of_surjective_iff, AdicCompletion.val_sub_apply, AdicCompletion.mk_zero_of, AdicCompletion.map_val_apply, AdicCompletion.of_ofAlgEquiv_symm, AdicCompletion.instIsScalarTower_1, AdicCompletion.val_smul, AdicCompletion.incl_apply, AdicCompletion.map_ext'_iff, AdicCompletion.ofTensorProduct_surjective_of_finite, AdicCompletion.val_smul_eq_evalₐ_smul, AdicCompletion.pi_apply_coe, AdicCompletion.map_injective, AdicCompletion.val_add_apply, AdicCompletion.smul_eval, AdicCompletion.factor_eval_eq_evalₐ, IsAdicComplete.of_liftRingHom, AdicCompletion.instIsCentralScalar, AdicCompletion.sumInv_apply, AdicCompletion.sum_lof, AdicCompletion.mkₐ_apply_coe, AdicCompletion.map_comp_apply, AdicCompletion.val_sum, IsAdicComplete.of_lift, AdicCompletion.map_comp, AdicCompletion.range_eval, AdicCompletion.val_neg_apply, AdicCompletion.transitionMap_comp_eval, AdicCompletion.map_id, AdicCompletion.instIsHausdorff, AdicCompletion.sumInv_comp_sum, AdicCompletion.coe_eval, AdicCompletion.coe_ofTensorProductEquivOfFiniteNoetherian, AdicCompletion.factorₐ_evalₐ_one, AdicCompletion.val_mul, AdicCompletion.ofTensorProductEquivOfFiniteNoetherian_symm_of, AdicCompletion.mk_ofAlgEquiv_symm, AdicCompletion.ofTensorProduct_bijective_of_finite_of_isNoetherian, AdicCompletion.kerProj_surjective, AdicCompletion.of_bijective_iff, IsAdicComplete.of_comp_lift, AdicCompletion.ofTensorProduct_bijective_of_pi_of_fintype, AdicCompletion.map_mk, AdicCompletion.ofAlgEquiv_apply, AdicCompletion.of_surjective, IsAdicComplete.ofAlgEquiv_comp_liftRingHom, AdicCompletion.sum_of, AdicCompletion.mk_surjective, AdicCompletion.map_ext''_iff, AdicCompletion.congr_symm_apply, AdicCompletion.of_ofLinearEquiv_symm, AdicCompletion.kerProj_of, AdicCompletion.evalOneₐ_of, IsAdicComplete.StrictMono.of_comp_lift, AdicCompletion.val_add, AdicCompletion.mk_smul_top_ofAlgEquiv_symm, AdicCompletion.val_one, AdicCompletion.tensor_map_id_left_eq_map, AdicCompletion.factor_eval_liftRingHom, AdicCompletion.of_inj, AdicCompletion.ofTensorProduct_tmul, AdicCompletion.map_exact, AdicCompletion.evalₐ_liftAlgHom, AdicCompletion.surjective_evalₐ, AdicCompletion.mk_ofAlgEquiv_symm_eq_evalOneₐ, AdicCompletion.of_injective, AdicCompletion.val_sub, AdicCompletion.val_neg, AdicCompletion.ofTensorProductEquivOfFiniteNoetherian_apply, AdicCompletion.sumEquivOfFintype_apply, AdicCompletion.of_bijective, Algebra.FormallySmooth.exists_adicCompletionEvalOneₐ_comp_eq, AdicCompletion.evalₐ_of, AdicCompletion.evalOneₐ_surjective, AdicCompletion.factor_evalₐ_eq_eval, AdicCompletion.evalₐ_comp_liftRingHom, AdicCompletion.eval_of, AdicCompletion.map_zero, AdicCompletion.component_sumInv, AdicCompletion.evalₐ_mk, AdicCompletion.piEquivOfFintype_apply, IsAdicComplete.StrictMono.of_lift, AdicCompletion.evalₐ_mkₐ, AdicCompletion.ofTensorProduct_naturality, AdicCompletion.val_zero, AdicCompletion.instIsScalarTower, AdicCompletion.ofLinearEquiv_apply, AdicCompletion.mk_apply_coe, AdicCompletion.congr_apply, Algebra.FormallySmooth.exists_kerProj_comp_eq_id, AdicCompletion.of_injective_iff, AdicCompletion.eval_lift_apply, AdicCompletion.val_zero_apply, AdicCompletion.tensor_map_id_left_injective_of_injective, AdicCompletion.eval_surjective, AdicCompletion.instSMulCommClass, AdicCompletion.sumEquivOfFintype_symm_apply, AdicCompletion.eval_apply, AdicCompletion.flat_of_isNoetherian, AdicCompletion.piEquivFin_apply, AdicCompletion.ofLinearEquiv_symm_of, AdicCompletion.val_sum_apply, AdicCompletion.evalOneₐ_liftAlgHom, AdicCompletion.evalₐ_liftRingHom, AdicCompletion.map_of, AdicCompletion.map_surjective_of_mkQ_comp_surjective, AdicCompletion.of_apply, AdicCompletion.map_surjective, AdicCompletion.eval_comp_of, AdicCompletion.sum_comp_sumInv, AdicCompletion.val_smul_apply, AdicCompletion.eval_lift, AdicCompletion.ofAlgEquiv_symm_of

---

← Back to Index