Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/Smooth/Basic.lean

Statistics

MetricCount
DefinitionsequivOfFormallySmooth, equivH1CotangentOfFormallySmooth, homInfinitesimal, FormallySmooth, liftOfSurjective
5
TheoremsequivOfFormallySmooth_apply, equivOfFormallySmooth_symm, equivOfFormallySmooth_toLinearMap, cotangentComplex_injective_iff, formallySmooth_iff_split_injection, comp, comp_lift, comp_liftOfSurjective, comp_surjective, exists_lift, iff_comp_surjective, iff_of_equiv, iff_of_surjective, iff_split_injection, iff_split_surjection, iff_subsingleton_and_projective, inst, instFinitePresentationKaehlerDifferentialOfEssFiniteType, instLocalization, instTensorProduct, kerCotangentToTensor_injective_iff, liftOfSurjective_apply, localization_base, localization_map, mk_lift, of_comp_surjective, of_equiv, of_isLocalization, of_restrictScalars, of_split, polynomial, projective_kaehlerDifferential, subsingleton_h1Cotangent, baseChange, comp, finitePresentation, formallySmooth, of_equiv, of_isLocalization_Away, formallySmooth_iff, mvPolynomial, smooth_iff
42
Total47

Algebra

Definitions

NameCategoryTheorems
FormallySmooth πŸ“–CompData
41 mathmath: FormallySmooth.of_algebraicIndependent_of_isSeparable, Smooth.formallySmooth, smooth_iff, Extension.formallySmooth_iff_split_injection, FormallySmooth.adjoin_of_algebraicIndependent, smoothLocus_eq_univ_iff, RingHom.FormallySmooth.toAlgebra, FormallySmooth.of_isLocalization, FormallySmooth.iff_injective_cotangentComplexBaseChange_residueField, FormallySmooth.iff_injective_lTensor_residueField, FormallySmooth.of_pi, FormallySmooth.inst, FormallySmooth.iff_subsingleton_and_projective, FormallySmooth.of_restrictScalars, FormallySmooth.of_equiv, FormallySmooth.iff_of_surjective, FormallySmooth.instTensorProduct, FormallySmooth.localization_base, RingHom.formallySmooth_algebraMap, FormallyEtale.instFormallySmooth, FormallySmooth.of_algebraicIndependent, FormallySmooth.iff_split_surjection, FormallySmooth.of_comp_surjective, FormallySmooth.instLocalization, FormallyEtale.iff_formallyUnramified_and_formallySmooth, FormallySmooth.of_split, FormallySmooth.of_perfectField, FormallySmooth.pi_iff, mvPolynomial, FormallyEtale.iff_unramified_and_smooth, formallySmooth_iff, FormallySmooth.of_formallySmooth_residueField_tensor, FormallySmooth.iff_injective_cotangentComplexBaseChange, FormallySmooth.localization_map, FormallySmooth.polynomial, basicOpen_subset_smoothLocus_iff, FormallySmooth.comp, FormallySmooth.iff_restrictScalars, FormallySmooth.iff_comp_surjective, FormallySmooth.iff_split_injection, FormallySmooth.iff_of_equiv

Theorems

NameKindAssumesProvesValidatesDepends On
formallySmooth_iff πŸ“–mathematicalβ€”FormallySmooth
Module.Projective
CommSemiring.toSemiring
CommRing.toCommSemiring
KaehlerDifferential
AddCommGroup.toAddCommMonoid
instAddCommGroupKaehlerDifferential
KaehlerDifferential.module'
id
to_smulCommClass
H1Cotangent
β€”to_smulCommClass
mvPolynomial πŸ“–mathematicalβ€”FormallySmooth
MvPolynomial
CommRing.toCommSemiring
MvPolynomial.instCommRingMvPolynomial
MvPolynomial.algebra
id
β€”MvPolynomial.aeval_X_left
Submodule.subsingleton_iff_eq_bot
MvPolynomial.map_id
Function.Surjective.subsingleton
Extension.Cotangent.mk_surjective
Function.Injective.subsingleton
Extension.instIsScalarTowerCotangent
IsScalarTower.right
Extension.h1CotangentΞΉ_injective
to_smulCommClass
Module.Projective.of_free
instFreeMvPolynomialKaehlerDifferential
Equiv.subsingleton
RingHomInvPair.ids
smooth_iff πŸ“–mathematicalβ€”Smooth
FormallySmooth
FinitePresentation
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”β€”

Algebra.Extension

Definitions

NameCategoryTheorems
equivH1CotangentOfFormallySmooth πŸ“–CompOpβ€”
homInfinitesimal πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
cotangentComplex_injective_iff πŸ“–mathematicalβ€”Cotangent
CotangentSpace
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupCotangent
TensorProduct.addCommMonoid
Ring
commRing
KaehlerDifferential
instRingOfIsScalarTower
Algebra.id
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instAddCommGroupKaehlerDifferential
Algebra.toModule
algebraβ‚‚
KaehlerDifferential.module'
instModuleCotangent
TensorProduct.leftModule
Semiring.toModule
Algebra.to_smulCommClass
LinearMap.instFunLike
cotangentComplex
Algebra.H1Cotangent
β€”IsScalarTower.left
Algebra.to_smulCommClass
subsingleton_h1Cotangent
Equiv.subsingleton_congr
RingHomInvPair.ids
instIsScalarTowerCotangent
IsScalarTower.right
formallySmooth_iff_split_injection πŸ“–mathematicalβ€”Algebra.FormallySmooth
LinearMap.comp
Cotangent
CotangentSpace
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupCotangent
TensorProduct.addCommMonoid
Ring
commRing
KaehlerDifferential
instRingOfIsScalarTower
Algebra.id
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instAddCommGroupKaehlerDifferential
Algebra.toModule
algebraβ‚‚
KaehlerDifferential.module'
instModuleCotangent
TensorProduct.leftModule
Semiring.toModule
Algebra.to_smulCommClass
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
cotangentComplex
LinearMap.id
β€”IsScalarTower.left
Algebra.to_smulCommClass
RingHom.instRingHomClass
RingHomCompTriple.ids
Algebra.FormallySmooth.iff_split_injection
instIsScalarTowerRing_2
algebraMap_surjective
RingHomInvPair.ids
AddEquiv.map_add'
Cotangent.ext
Cotangent.val_smul'
Equiv.left_inv
Equiv.right_inv
TensorProduct.isScalarTower_left
IsScalarTower.right
instIsScalarTowerCotangent
LinearMap.ext
DFunLike.congr_fun
LinearMap.IsScalarTower.compatibleSMul

Algebra.Extension.H1Cotangent

Definitions

NameCategoryTheorems
equivOfFormallySmooth πŸ“–CompOp
3 mathmath: equivOfFormallySmooth_apply, equivOfFormallySmooth_symm, equivOfFormallySmooth_toLinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
equivOfFormallySmooth_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Algebra.Extension.H1Cotangent
AddCommGroup.toAddCommMonoid
Algebra.Extension.instAddCommGroupH1Cotangent
Algebra.Extension.instModuleH1CotangentOfIsScalarTowerCotangent
Algebra.id
Algebra.Extension.instModuleCotangent
Algebra.Extension.instIsScalarTowerCotangent
IsScalarTower.right
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
equivOfFormallySmooth
LinearMap
LinearMap.instFunLike
map
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
β€”IsScalarTower.left
RingHomInvPair.ids
Algebra.Extension.instIsScalarTowerCotangent
IsScalarTower.right
equivOfFormallySmooth_toLinearMap
LinearEquiv.coe_coe
equivOfFormallySmooth_symm πŸ“–mathematicalβ€”LinearEquiv.symm
Algebra.Extension.H1Cotangent
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Algebra.Extension.instAddCommGroupH1Cotangent
Algebra.Extension.instModuleH1CotangentOfIsScalarTowerCotangent
Algebra.id
Algebra.Extension.instModuleCotangent
Algebra.Extension.instIsScalarTowerCotangent
IsScalarTower.right
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
equivOfFormallySmooth
β€”IsScalarTower.left
RingHomInvPair.ids
Algebra.Extension.instIsScalarTowerCotangent
IsScalarTower.right
equivOfFormallySmooth_toLinearMap πŸ“–mathematicalβ€”LinearEquiv.toLinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Algebra.Extension.H1Cotangent
AddCommGroup.toAddCommMonoid
Algebra.Extension.instAddCommGroupH1Cotangent
Algebra.Extension.instModuleH1CotangentOfIsScalarTowerCotangent
Algebra.id
Algebra.Extension.instModuleCotangent
Algebra.Extension.instIsScalarTowerCotangent
IsScalarTower.right
equivOfFormallySmooth
map
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
β€”IsScalarTower.left
LinearMap.ext
Algebra.Extension.instIsScalarTowerCotangent
IsScalarTower.right
RingHomInvPair.ids
map_toInfinitesimal_bijective
LinearEquiv.symm_apply_eq
RingHomCompTriple.ids
LinearMap.IsScalarTower.compatibleSMul
Algebra.Extension.instIsScalarTowerH1CotangentOfCotangent
map_comp
map_eq

Algebra.FormallySmooth

Definitions

NameCategoryTheorems
liftOfSurjective πŸ“–CompOp
2 mathmath: liftOfSurjective_apply, comp_liftOfSurjective

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–mathematicalβ€”Algebra.FormallySmoothβ€”of_comp_surjective
Ideal.instIsTwoSided_1
comp_surjective
AlgHom.congr_fun
IsScalarTower.of_algHom
Ideal.Quotient.isScalarTower
AlgHom.ext
comp_lift πŸ“–mathematicalIsNilpotent
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.pointwiseZero
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
AlgHom.comp
HasQuotient.Quotient
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
Ideal.Quotient.algebra
Ideal.Quotient.mkₐ
lift
β€”IsScalarTower.right
Ideal.instIsTwoSided_1
exists_lift
comp_liftOfSurjective πŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
IsNilpotent
Ideal
Submodule.pointwiseZero
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
RingHom.ker
RingHom
RingHom.instFunLike
RingHom.instRingHomClass
RingHomClass.toRingHom
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.comp
liftOfSurjective
β€”IsScalarTower.right
RingHom.instRingHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.ext
liftOfSurjective_apply
comp_surjective πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Bot.bot
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
AlgHom
Ring.toSemiring
CommRing.toRing
HasQuotient.Quotient
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
Ideal.Quotient.algebra
AlgHom.comp
Ideal.Quotient.mkₐ
β€”Ideal.instIsTwoSided_1
Algebra.to_smulCommClass
LinearMap.ker_eq_bot
Submodule.subsingleton_iff_eq_bot
subsingleton_h1Cotangent
RingHomCompTriple.ids
List.TFAE.out
RingHomInvPair.ids
Function.Exact.split_tfae'
Algebra.Extension.exact_cotangentComplex_toKaehler
Algebra.Extension.subsingleton_h1Cotangent
Module.projective_lifting_property
projective_kaehlerDifferential
Algebra.Extension.toKaehler_surjective
RingHom.instRingHomClass
Algebra.Generators.instIsScalarTowerRing
IsScalarTower.left
Algebra.Generators.algebraMap_surjective
Algebra.Extension.Cotangent.val_smul'
LinearMap.IsScalarTower.compatibleSMul
TensorProduct.isScalarTower_left
IsScalarTower.right
Algebra.Extension.instIsScalarTowerCotangent
LinearMap.ext
Ideal.Quotient.mk_surjective
Ideal.Quotient.algebraMap_eq
MvPolynomial.aeval_algebraMap_apply
Ideal.Quotient.isScalarTower
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Algebra.Generators.algebraMap_eq
AlgHom.coe_toRingHom
MvPolynomial.comp_aeval_apply
Function.comp_assoc
Function.comp_surjInv
CompTriple.comp_eq
CompTriple.instId_comp
CompTriple.instIsIdId
Ideal.Quotient.eq_zero_iff_mem
Algebra.Generators.algebraMap_apply
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
LE.le.trans
Ideal.pow_right_mono
LE.le.trans_eq
Ideal.le_comap_pow
Ideal.Quotient.algHom_ext
MvPolynomial.algHom_ext
MvPolynomial.aeval_X
Function.surjInv_eq
AlgHom.comp_assoc
AlgHom.comp_id
exists_lift πŸ“–mathematicalIsNilpotent
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.pointwiseZero
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
AlgHom.comp
HasQuotient.Quotient
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
Ideal.Quotient.algebra
Ideal.Quotient.mkₐ
β€”IsScalarTower.right
Ideal.instIsTwoSided_1
Ideal.IsNilpotent.induction_on
comp_surjective
sup_eq_right
RingEquiv.map_mul'
RingEquiv.map_add'
AlgHom.comp_assoc
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
AlgEquiv.toAlgHom_eq_coe
AlgEquiv.comp_symm
AlgHom.id_comp
iff_comp_surjective πŸ“–mathematicalβ€”Algebra.FormallySmooth
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
Ring.toSemiring
CommRing.toRing
HasQuotient.Quotient
Ideal
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
Ideal.Quotient.algebra
AlgHom.comp
Ideal.Quotient.mkₐ
β€”Ideal.instIsTwoSided_1
comp_surjective
of_comp_surjective
iff_of_equiv πŸ“–mathematicalβ€”Algebra.FormallySmoothβ€”of_equiv
iff_of_surjective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
Algebra.FormallySmooth
IsIdempotentElem
Ideal
Submodule.mul
Semiring.toModule
IsScalarTower.right
Algebra.id
RingHom.ker
RingHom.instRingHomClass
β€”IsScalarTower.right
RingHom.instRingHomClass
iff_split_surjection
inst
Ideal.Quotient.algHom_ext
Ideal.instIsTwoSided_1
Algebra.ext_id
IsIdempotentElem.eq_1
pow_two
Ideal.mk_ker
Ideal.Quotient.algebraMap_eq
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.comp_algebraMap
RingHom.ker_comp_of_injective
AlgEquiv.injective
AlgHom.ext
Function.Surjective.forall
AlgHom.commutes
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
iff_split_injection πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
Algebra.FormallySmooth
LinearMap.comp
Ideal.Cotangent
RingHom.ker
RingHom.instRingHomClass
TensorProduct
KaehlerDifferential
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddCommGroup.toAddCommMonoid
instAddCommGroupKaehlerDifferential
Algebra.toModule
KaehlerDifferential.module'
Algebra.id
Algebra.to_smulCommClass
Ideal.instAddCommGroupCotangent
TensorProduct.addCommMonoid
Ideal.instModuleCotangentOfAlgebra
TensorProduct.instModule
RingHom.id
RingHomCompTriple.ids
KaehlerDifferential.kerCotangentToTensor
LinearMap.id
β€”Algebra.to_smulCommClass
RingHom.instRingHomClass
RingHomCompTriple.ids
Algebra.formallySmooth_iff
Module.Projective.iff_split_of_projective
Module.Projective.tensorProduct
IsScalarTower.right
Module.Projective.of_free
Module.Free.self
projective_kaehlerDifferential
KaehlerDifferential.mapBaseChange_surjective
kerCotangentToTensor_injective_iff
IsScalarTower.to_smulCommClass
LinearMap.IsScalarTower.compatibleSMul
TensorProduct.isScalarTower_left
KaehlerDifferential.isScalarTower_of_tower
RingHomInvPair.ids
smulCommClass_self
IsScalarTower.to_smulCommClass'
Equiv.exists_congr_right
List.TFAE.out
Function.Exact.split_tfae'
KaehlerDifferential.exact_kerCotangentToTensor_mapBaseChange
iff_split_surjection πŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
Algebra.FormallySmooth
AlgHom.comp
HasQuotient.Quotient
Ideal
Ideal.instHasQuotient_1
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
RingHom.ker
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.instRingHomClass
AlgHom.toRingHom
Ideal.Quotient.semiring
Ideal.instAlgebraQuotient
AlgHom.kerSquareLift
AlgHom.id
β€”RingHom.instRingHomClass
Algebra.to_smulCommClass
RingHomCompTriple.ids
iff_split_injection
IsScalarTower.of_algHom
nonempty_subtype
Equiv.nonempty_congr
iff_subsingleton_and_projective πŸ“–mathematicalβ€”Algebra.FormallySmooth
Module.Projective
CommSemiring.toSemiring
CommRing.toCommSemiring
KaehlerDifferential
AddCommGroup.toAddCommMonoid
instAddCommGroupKaehlerDifferential
KaehlerDifferential.module'
Algebra.id
Algebra.to_smulCommClass
Algebra.H1Cotangent
β€”Algebra.formallySmooth_iff
inst πŸ“–mathematicalβ€”Algebra.FormallySmooth
Algebra.id
CommRing.toCommSemiring
β€”of_equiv
Algebra.mvPolynomial
Empty.instIsEmpty
instFinitePresentationKaehlerDifferentialOfEssFiniteType πŸ“–mathematicalβ€”Module.FinitePresentation
KaehlerDifferential
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupKaehlerDifferential
KaehlerDifferential.module'
Algebra.id
Algebra.to_smulCommClass
β€”Module.finitePresentation_of_projective
Algebra.to_smulCommClass
projective_kaehlerDifferential
KaehlerDifferential.finite
instLocalization πŸ“–mathematicalβ€”Algebra.FormallySmooth
Localization
CommRing.toCommMonoid
OreLocalization.instCommRing
OreLocalization.oreSetComm
OreLocalization.instAlgebra
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”of_isLocalization
Localization.isLocalization
comp
OreLocalization.instIsScalarTower
IsScalarTower.right
instTensorProduct πŸ“–mathematicalβ€”Algebra.FormallySmooth
TensorProduct
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
CommSemiring.toSemiring
Algebra.TensorProduct.instCommRing
Algebra.TensorProduct.leftAlgebra
Algebra.id
Algebra.to_smulCommClass
β€”of_comp_surjective
Algebra.to_smulCommClass
Ideal.instIsTwoSided_1
IsScalarTower.right
IsScalarTower.of_algebraMap_eq'
TensorProduct.isScalarTower_left
Ideal.Quotient.isScalarTower
AlgHom.restrictScalars_injective
Algebra.TensorProduct.ext'
IsScalarTower.left
Algebra.smul_def
map_smul
SemilinearMapClass.toMulActionSemiHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
TensorProduct.smul_tmul'
smul_eq_mul
mul_one
IsScalarTower.to_smulCommClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
mk_lift
kerCotangentToTensor_injective_iff πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
Ideal.Cotangent
RingHom.ker
RingHom.instRingHomClass
TensorProduct
KaehlerDifferential
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddCommGroup.toAddCommMonoid
instAddCommGroupKaehlerDifferential
Algebra.toModule
KaehlerDifferential.module'
Algebra.id
Algebra.to_smulCommClass
LinearMap
RingHom.id
Ideal.instAddCommGroupCotangent
TensorProduct.addCommMonoid
Ideal.instModuleCotangentOfAlgebra
TensorProduct.instModule
LinearMap.instFunLike
KaehlerDifferential.kerCotangentToTensor
Algebra.H1Cotangent
β€”Function.surjInv_eq
Algebra.Extension.cotangentComplex_injective_iff
liftOfSurjective_apply πŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
IsNilpotent
Ideal
Submodule.pointwiseZero
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
RingHom.ker
AlgHomClass.toRingHomClass
AlgHom.algHomClass
liftOfSurjectiveβ€”IsScalarTower.right
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgEquiv.injective
RingHom.instIsTwoSidedKer
Ideal.instIsTwoSided_1
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
AlgHom.coe_coe
AlgHom.comp_apply
mk_lift
AlgEquiv.apply_symm_apply
Ideal.quotientKerAlgEquivOfSurjective_apply
RingHom.instRingHomClass
localization_base πŸ“–mathematicalβ€”Algebra.FormallySmoothβ€”of_comp_surjective
Ideal.instIsTwoSided_1
IsScalarTower.right
Ideal.Quotient.isScalarTower
IsScalarTower.of_algebraMap_eq'
AlgHomClass.toRingHomClass
AlgHom.algHomClass
IsLocalization.ringHom_ext
RingHom.comp_assoc
IsScalarTower.algebraMap_eq
AlgHom.comp_algebraMap
AlgHom.ext
mk_lift
localization_map πŸ“–mathematicalβ€”Algebra.FormallySmoothβ€”MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
localization_base
comp
of_isLocalization
mk_lift πŸ“–mathematicalIsNilpotent
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.pointwiseZero
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
DFunLike.coe
RingHom
HasQuotient.Quotient
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
AlgHom
AlgHom.funLike
lift
Ideal.instHasQuotient_1
Ideal.Quotient.semiring
Ideal.instAlgebraQuotient
β€”IsScalarTower.right
AlgHom.congr_fun
Ideal.instIsTwoSided_1
comp_lift
of_comp_surjective πŸ“–mathematicalAlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
Ring.toSemiring
CommRing.toRing
HasQuotient.Quotient
Ideal
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
Ideal.Quotient.algebra
AlgHom.comp
Ideal.Quotient.mkₐ
Algebra.FormallySmoothβ€”Ideal.instIsTwoSided_1
Algebra.Generators.instIsScalarTowerRing
IsScalarTower.left
RingHom.instRingHomClass
iff_split_surjection
Algebra.mvPolynomial
Algebra.Generators.algebraMap_surjective
Ideal.Quotient.lift_surjective_of_surjective
AlgHom.ker_kerSquareLift
Ideal.cotangentIdeal_square
AlgHomClass.toRingHomClass
AlgHom.algHomClass
RingHom.instIsTwoSidedKer
AlgHom.ext
AlgEquiv.surjective
Ideal.Quotient.mk_surjective
AlgEquiv.symm_apply_apply
of_equiv πŸ“–mathematicalβ€”Algebra.FormallySmoothβ€”RingHom.instRingHomClass
iff_split_surjection
AlgEquiv.surjective
Ideal.instIsTwoSided_1
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
AlgHom.ext
AlgEquiv.apply_symm_apply
of_isLocalization πŸ“–mathematicalβ€”Algebra.FormallySmoothβ€”of_comp_surjective
Ideal.instIsTwoSided_1
IsNilpotent.isUnit_quotient_mk_iff
IsScalarTower.right
AlgHom.commutes
IsUnit.map
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
IsLocalization.map_units
IsLocalization.lift_eq
AlgHom.coe_ringHom_injective
IsLocalization.ringHom_ext
RingHom.ext
AlgHom.comp_algebraMap_of_tower
IsScalarTower.left
Ideal.Quotient.isScalarTower
of_restrictScalars πŸ“–mathematicalβ€”Algebra.FormallySmoothβ€”Ideal.instIsTwoSided_1
iff_comp_surjective
IsScalarTower.of_algebraMap_eq'
Ideal.Quotient.isScalarTower
comp_surjective
Algebra.FormallyUnramified.comp_injective
AlgHom.comp_assoc
AlgHom.ext
AlgHom.commutes
of_split πŸ“–mathematicalAlgHom.comp
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
RingHom.ker
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.instRingHomClass
AlgHom.toRingHom
Ideal.Quotient.semiring
Ideal.instAlgebraQuotient
AlgHom.kerSquareLift
AlgHom.id
Algebra.FormallySmoothβ€”RingHom.instRingHomClass
iff_split_surjection
Ideal.instIsTwoSided_1
Ideal.Quotient.mk_surjective
polynomial πŸ“–mathematicalβ€”Algebra.FormallySmooth
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.commRing
Polynomial.algebraOfAlgebra
Algebra.id
β€”of_equiv
Algebra.mvPolynomial
projective_kaehlerDifferential πŸ“–mathematicalβ€”Module.Projective
CommSemiring.toSemiring
CommRing.toCommSemiring
KaehlerDifferential
AddCommGroup.toAddCommMonoid
instAddCommGroupKaehlerDifferential
KaehlerDifferential.module'
Algebra.id
Algebra.to_smulCommClass
β€”β€”
subsingleton_h1Cotangent πŸ“–mathematicalβ€”Algebra.H1Cotangentβ€”β€”

Algebra.Smooth

Theorems

NameKindAssumesProvesValidatesDepends On
baseChange πŸ“–mathematicalβ€”Algebra.Smooth
TensorProduct
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
CommSemiring.toSemiring
Algebra.TensorProduct.instCommRing
Algebra.TensorProduct.leftAlgebra
Algebra.id
Algebra.to_smulCommClass
β€”Algebra.to_smulCommClass
Algebra.FormallySmooth.instTensorProduct
formallySmooth
Algebra.FinitePresentation.baseChange
finitePresentation
comp πŸ“–mathematicalβ€”Algebra.Smoothβ€”Algebra.FormallySmooth.comp
formallySmooth
Algebra.FinitePresentation.trans
finitePresentation
finitePresentation πŸ“–mathematicalβ€”Algebra.FinitePresentation
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”β€”
formallySmooth πŸ“–mathematicalβ€”Algebra.FormallySmoothβ€”β€”
of_equiv πŸ“–mathematicalβ€”Algebra.Smoothβ€”Algebra.FormallySmooth.of_equiv
formallySmooth
Algebra.FinitePresentation.equiv
finitePresentation
of_isLocalization_Away πŸ“–mathematicalβ€”Algebra.Smoothβ€”Algebra.FormallySmooth.of_isLocalization
IsLocalization.Away.finitePresentation

---

← Back to Index