Documentation Verification Report

Field

📁 Source: Mathlib/RingTheory/Smooth/Field.lean

Statistics

MetricCount
Definitions0
Theoremsadjoin_of_algebraicIndependent, of_algebraicIndependent, of_algebraicIndependent_of_isSeparable, of_perfectField
4
Total4

Algebra.FormallySmooth

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_of_algebraicIndependent 📖mathematicalAlgebraicIndependent
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.FormallySmooth
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
Set.range
IntermediateField.toField
IntermediateField.algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
of_equiv
Algebra.mvPolynomial
of_isLocalization
IntermediateField.algebraAdjoinAdjoin.instIsFractionRingSubtypeMemSubalgebraAdjoinAdjoin
comp
IsScalarTower.left
IntermediateField.algebraAdjoinAdjoin.instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin
of_algebraicIndependent 📖mathematicalAlgebraicIndependent
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IntermediateField.adjoin
Set.range
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Algebra.FormallySmoothIsScalarTower.left
adjoin_of_algebraicIndependent
of_equiv
of_algebraicIndependent_of_isSeparable 📖mathematicalAlgebraicIndependent
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.FormallySmoothIsScalarTower.left
adjoin_of_algebraicIndependent
Algebra.EssFiniteType.of_comp
IntermediateField.isScalarTower_mid'
Algebra.FormallyEtale.iff_isSeparable
comp
Algebra.FormallyEtale.instFormallySmooth
of_perfectField 📖mathematicalAlgebra.FormallySmooth
EuclideanDomain.toCommRing
Field.toEuclideanDomain
exists_isTranscendenceBasis_and_isSeparable_of_perfectField
Subtype.range_coe_subtype
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
of_algebraicIndependent_of_isSeparable

---

← Back to Index