Documentation Verification Report

IntegralClosure

πŸ“ Source: Mathlib/RingTheory/Smooth/IntegralClosure.lean

Statistics

MetricCount
DefinitionstoIntegralClosure
1
TheoremstoIntegralClosure_bijective_of_isLocalization, toIntegralClosure_bijective_of_isLocalizationAway, toIntegralClosure_bijective_of_smooth, toIntegralClosure_bijective_of_tower, toIntegralClosure_injective_of_flat, toIntegralClosure_mvPolynomial_bijective, exists_derivative_mul_eq_and_isIntegral_coeff, mem_adjoin_map_integralClosure_of_isStandardEtale
8
Total9

TensorProduct

Definitions

NameCategoryTheorems
toIntegralClosure πŸ“–CompOp
4 mathmath: toIntegralClosure_bijective_of_isLocalization, toIntegralClosure_bijective_of_smooth, toIntegralClosure_mvPolynomial_bijective, toIntegralClosure_injective_of_flat

Theorems

NameKindAssumesProvesValidatesDepends On
toIntegralClosure_bijective_of_isLocalization πŸ“–mathematicalβ€”Function.Bijective
TensorProduct
CommRing.toCommSemiring
Subalgebra
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Subalgebra.toCommRing
Algebra.toModule
Subalgebra.instModuleSubtypeMem
Algebra.TensorProduct.instCommRing
Algebra.TensorProduct.leftAlgebra
Algebra.id
Algebra.to_smulCommClass
DFunLike.coe
AlgHom
Algebra.TensorProduct.instSemiring
Subalgebra.toSemiring
Subalgebra.algebra
AlgHom.funLike
toIntegralClosure
β€”Algebra.to_smulCommClass
isScalarTower_left
IsScalarTower.right
RingHom.IsIntegralElem.of_comp
AlgHom.comp_algebraMap_of_tower
IsScalarTower.left
isScalarTower
RingHom.IsIntegralElem.map
IsScalarTower.of_algebraMap_eq'
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.comp_algebraMap
IsLocalization.integralClosure
Algebra.TensorProduct.right_isScalarTower
IsLocalization.tensorRight
Subalgebra.instIsScalarTowerSubtypeMem
AlgHom.coe_restrictScalars'
AlgEquiv.coe_restrictScalars'
AlgEquiv.coe_algHom
Algebra.TensorProduct.ext
IsLocalization.algHom_ext
IsScalarTower.to_smulCommClass
Algebra.ext_id
AlgHom.ext
IsLocalization.map_eq
AlgEquiv.bijective
toIntegralClosure_bijective_of_isLocalizationAway πŸ“–β€”Ideal.span
CommSemiring.toSemiring
CommRing.toCommSemiring
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsScalarTower
Algebra.toSMul
IsLocalization.Away
Set
Set.instMembership
Function.Bijective
TensorProduct
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Subalgebra.toCommRing
Algebra.toModule
Subalgebra.instModuleSubtypeMem
Algebra.TensorProduct.instCommRing
Algebra.TensorProduct.leftAlgebra
Algebra.id
Algebra.to_smulCommClass
DFunLike.coe
AlgHom
Algebra.TensorProduct.instSemiring
Subalgebra.toSemiring
Subalgebra.algebra
AlgHom.funLike
toIntegralClosure
β€”β€”Algebra.to_smulCommClass
IsScalarTower.to_smulCommClass
IsScalarTower.right
IsScalarTower.of_algHom
isLocalizedModule_iff_isLocalization
IsLocalization.tensorProduct_tensorProduct
RingHom.ext
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
isScalarTower_left
IsIntegral.tower_top
IsIntegral.map
IsScalarTower.left
AlgHom.algHomClass
IsScalarTower.of_algebraMap_eq'
IsLocalization.integralClosure
bijective_of_isLocalized_span
smulCommClass_self
LinearMap.IsScalarTower.compatibleSMul
Subalgebra.instIsScalarTowerSubtypeMem
IsLocalizedModule.ext
IsLocalizedModule.map_units
AlgebraTensorModule.curry_injective
Subalgebra.isScalarTower_right
RingHomCompTriple.ids
LinearMap.ext_ring
LinearMap.ext
IsLocalizedModule.map_apply
toIntegralClosure_bijective_of_smooth πŸ“–mathematicalβ€”Function.Bijective
TensorProduct
CommRing.toCommSemiring
Subalgebra
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Subalgebra.toCommRing
Algebra.toModule
Subalgebra.instModuleSubtypeMem
Algebra.TensorProduct.instCommRing
Algebra.TensorProduct.leftAlgebra
Algebra.id
Algebra.to_smulCommClass
DFunLike.coe
AlgHom
Algebra.TensorProduct.instSemiring
Subalgebra.toSemiring
Subalgebra.algebra
AlgHom.funLike
toIntegralClosure
β€”Algebra.to_smulCommClass
IsScalarTower.right
Algebra.IsSmoothAt.exists_isStandardEtale_mvPolynomial
PrimeSpectrum.isPrime
Algebra.Smooth.finitePresentation
Algebra.FormallySmooth.instLocalization
Algebra.Smooth.formallySmooth
toIntegralClosure_bijective_of_tower
toIntegralClosure_mvPolynomial_bijective
toIntegralClosure_bijective_of_isLocalizationAway
Ideal.exists_le_maximal
Ideal.IsMaximal.isPrime'
Ideal.subset_span
Set.mem_range_self
OreLocalization.instIsScalarTower
Localization.isLocalization
Set.forall_subtype_range_iff
toIntegralClosure_bijective_of_tower πŸ“–β€”Function.Bijective
TensorProduct
CommRing.toCommSemiring
Subalgebra
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Subalgebra.toCommRing
Algebra.toModule
Subalgebra.instModuleSubtypeMem
Algebra.TensorProduct.instCommRing
Algebra.TensorProduct.leftAlgebra
Algebra.id
Algebra.to_smulCommClass
DFunLike.coe
AlgHom
Algebra.TensorProduct.instSemiring
Subalgebra.toSemiring
Subalgebra.algebra
AlgHom.funLike
toIntegralClosure
β€”β€”Algebra.to_smulCommClass
IsScalarTower.to_smulCommClass
IsScalarTower.right
AlgEquiv.coe_algHom
Algebra.TensorProduct.ext
isScalarTower_left
Subalgebra.instIsScalarTowerSubtypeMem
Algebra.ext_id
AlgHom.ext
Algebra.TensorProduct.cancelBaseChange_symm_tmul
Algebra.TensorProduct.cancelBaseChange_tmul
one_smul
AlgEquiv.bijective
toIntegralClosure_injective_of_flat πŸ“–mathematicalβ€”TensorProduct
CommRing.toCommSemiring
Subalgebra
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Subalgebra.toCommRing
Algebra.toModule
Subalgebra.instModuleSubtypeMem
Algebra.TensorProduct.instCommRing
Algebra.TensorProduct.leftAlgebra
Algebra.id
Algebra.to_smulCommClass
DFunLike.coe
AlgHom
Algebra.TensorProduct.instSemiring
Subalgebra.toSemiring
Subalgebra.algebra
AlgHom.funLike
toIntegralClosure
β€”Function.Injective.of_comp
Algebra.to_smulCommClass
AlgHom.coe_comp
toIntegralClosure.eq_1
AlgHom.val_comp_codRestrict
Module.Flat.lTensor_preserves_injective_linearMap
Subtype.val_injective
toIntegralClosure_mvPolynomial_bijective πŸ“–mathematicalβ€”Function.Bijective
TensorProduct
CommRing.toCommSemiring
MvPolynomial
Subalgebra
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
Subalgebra.toCommRing
Algebra.toModule
MvPolynomial.algebra
Algebra.id
Subalgebra.instModuleSubtypeMem
Algebra.TensorProduct.instCommRing
Algebra.TensorProduct.leftAlgebra
Algebra.to_smulCommClass
DFunLike.coe
AlgHom
Algebra.TensorProduct.instSemiring
Subalgebra.toSemiring
Subalgebra.algebra
AlgHom.funLike
toIntegralClosure
β€”Algebra.to_smulCommClass
toIntegralClosure_injective_of_flat
Module.Flat.of_free
MvPolynomial.instFree
RingEquiv.map_mul'
RingEquiv.map_add'
IsScalarTower.right
MvPolynomial.ringHom_ext'
RingHom.ext
MvPolynomial.ext
MvPolynomial.smulCommClass
RingHomCompTriple.comp_apply
RingHomCompTriple.right_ids
MvPolynomial.rTensorAlgEquiv_apply
MvPolynomial.coeff_map
MvPolynomial.coeff_rTensorAlgHom_tmul
MvPolynomial.coeff_C
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
MvPolynomial.map_comp_C
MvPolynomial.coeff_X'
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MvPolynomial.map_X
MvPolynomial.isIntegral_iff_isIntegral_coeff
IsIntegral.map
isScalarTower_left
IsScalarTower.left
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
MvPolynomial.mem_range_map_iff_coeffs_subset
Subtype.range_coe_subtype
AlgEquiv.injective
AlgEquiv.surjective
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgEquiv.symm_apply_apply
IsScalarTower.to_smulCommClass
MvPolynomial.isScalarTower
Algebra.TensorProduct.ext
MvPolynomial.algHom_ext
map_smul
SemilinearMapClass.toMulActionSemiHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.ext

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
exists_derivative_mul_eq_and_isIntegral_coeff πŸ“–mathematicalPolynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
AlgHom
Polynomial.semiring
Polynomial.algebraOfAlgebra
AlgHom.funLike
Polynomial.Monic
IsIntegral
CommRing.toRing
Polynomial.coeff
RingHom.ker
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.instRingHomClass
AlgHom.toRingHom
Ideal.span
Set
Set.instSingletonSet
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
LinearMap
RingHom.id
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Polynomial.module
Semiring.toModule
LinearMap.instFunLike
Polynomial.derivative
β€”RingHom.instRingHomClass
subsingleton_or_nontrivial
Polynomial.Monic.natDegree_eq_zero
Ideal.span_singleton_one
Ne.trans_eq
RingHom.ker_ne_top
RingHom.domain_nontrivial
Polynomial.Monic.exists_splits_map
Polynomial.splits_iff_exists_multiset
IsScalarTower.of_algebraMap_eq'
IsIntegral.of_aeval_monic_of_isIntegral_coeff
Polynomial.Monic.map
Polynomial.Monic.natDegree_map
Polynomial.Monic.leadingCoeff
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
one_mul
Polynomial.eval_multiset_prod
Multiset.prod_eq_zero
Multiset.map_map
Multiset.map_congr
Polynomial.eval_sub
Polynomial.eval_X
Polynomial.eval_C
sub_self
isIntegral_zero
Polynomial.coeff_map
IsIntegral.algebraMap
Polynomial.natDegree_multiset_prod_X_sub_C_eq_card
Polynomial.map_mul
Polynomial.derivative_map
Polynomial.derivative_prod
Multiset.sum_map_mul_right
Multiset.sum_map_sub
Multiset.dvd_sum
Polynomial.derivative_sub
Polynomial.derivative_X
Polynomial.derivative_C
sub_zero
mul_one
Multiset.cons_erase
Multiset.map_cons
Multiset.prod_cons
mul_comm
mul_dvd_mul_left
Polynomial.eval_map_algebraMap
Polynomial.map_modByMonic
Polynomial.div_modByMonic_unique
sub_eq_iff_eq_add'
Polynomial.degree_lt_degree
Ne.bot_lt
LE.le.trans
instLeftCommutativeOfCommutativeOfAssociative
Polynomial.natDegree_multiset_sum_le
Multiset.max_le_of_forall_le
Polynomial.natDegree_mul_C_le
Polynomial.natDegree_multiset_prod_le
Polynomial.natDegree_sub_C
Polynomial.natDegree_X
Multiset.map_const'
Multiset.card_erase_of_mem
Multiset.sum_replicate
Polynomial.isScalarTower
IsScalarTower.right
Ideal.span_le
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.liftOfSurjective_apply
IsIntegral.map
IsScalarTower.left
IsIntegral.tower_bot
instIsScalarTowerPolynomial_1
Polynomial.map_injective
FaithfulSMul.algebraMap_injective
Module.FaithfullyFlat.faithfulSMul
Module.FaithfullyFlat.instOfNontrivialOfFree
IsIntegral.multiset_sum
IsIntegral.mul
IsIntegral.multiset_prod
Polynomial.coeff_sub
IsIntegral.sub
Polynomial.coeff_X
Polynomial.coeff_C
Multiset.mem_of_mem_erase
Polynomial.modByMonic_eq_sub_mul_div
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
Eq.ge
Ideal.mem_span_singleton_self
MulZeroClass.zero_mul
Polynomial.isIntegral_iff_isIntegral_coeff
mem_adjoin_map_integralClosure_of_isStandardEtale πŸ“–mathematicalIsIntegral
TensorProduct
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
CommSemiring.toSemiring
Algebra.TensorProduct.instRing
CommRing.toRing
Algebra.TensorProduct.leftAlgebra
Algebra.id
Algebra.to_smulCommClass
Subalgebra
Algebra.TensorProduct.instSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
SetLike.coe
Algebra.TensorProduct.instAlgebra
Subalgebra.map
Algebra.TensorProduct.includeRight
integralClosure
β€”Algebra.to_smulCommClass
Algebra.IsStandardEtale.nonempty_standardEtalePresentation
OreLocalization.instIsScalarTower
IsScalarTower.right
IsLocalization.isLocalization_of_algEquiv
Localization.isLocalization
RingEquiv.map_mul'
RingEquiv.map_add'
IsScalarTower.to_smulCommClass
IsScalarTower.of_algHom
IsIntegral.exists_multiple_integral_of_isLocalization
TensorProduct.isScalarTower_left
IsIntegral.mul
isIntegral_algebraMap
Polynomial.Monic.finite_adjoinRoot
StandardEtalePair.monic_f
IsLocalization.lift_eq
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
StandardEtalePresentation.equivRing_symm_X
isIntegral_trans
Algebra.IsIntegral.of_finite
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
IsScalarTower.algebraMap_smul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
add_comm
AlgEquiv.surjective
IsLocalization.exists_mk'_eq
dvd_refl
Polynomial.ringHom_ext'
RingHom.ext
Polynomial.map_C
AdjoinRoot.map_of
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Polynomial.map_X
AdjoinRoot.map_root
IsIntegral.map
AdjoinRoot.instIsScalarTower
IsScalarTower.left
Algebra.IsIntegral.isIntegral
Algebra.TensorProduct.includeRight_apply
Polynomial.aeval_algHom_apply
Polynomial.aeval_map_algebraMap
AlgEquiv.eq_symm_apply
Algebra.TensorProduct.tmul_pow
one_pow
TensorProduct.isScalarTower
IsLocalization.Away.exists_isIntegral_mul_of_isIntegral_algebraMap
map_mul
mul_assoc
pow_add
Algebra.smul_def
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgEquiv.symm_apply_apply
AlgEquiv.apply_symm_apply
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
Mathlib.Tactic.RingNF.mul_assoc_rev
add_zero
Polynomial.isScalarTower
exists_derivative_mul_eq_and_isIntegral_coeff
AdjoinRoot.mk_surjective
Polynomial.coeff_map
Ideal.mk_ker
Ideal.instIsTwoSided_1
Subalgebra.mem_toSubmodule
Submodule.smul_mem_iff_of_isUnit
IsUnit.mul
StandardEtalePair.HasMap.isUnit_derivative_f
StandardEtalePresentation.hasMap
IsUnit.pow
AlgEquiv.injective
IsLocalization.mk'.congr_simp
Polynomial.evalβ‚‚_C
AdjoinRoot.lift_of
AlgEquiv.commutes
Polynomial.evalβ‚‚_X
AdjoinRoot.lift_root
Polynomial.evalβ‚‚_eq_sum_range
sum_mem
Submodule.addSubmonoidClass
Subalgebra.mul_mem
Algebra.subset_adjoin
pow_mem
SubsemiringClass.toSubmonoidClass
Subalgebra.instSubsemiringClass
Subalgebra.algebraMap_mem

---

← Back to Index