Documentation Verification Report

Local

πŸ“ Source: Mathlib/RingTheory/Smooth/Local.lean

Statistics

MetricCount
Definitions0
Theoremsiff_injective_cotangentComplexBaseChange, iff_injective_cotangentComplexBaseChange_residueField, iff_injective_lTensor_residueField
3
Total3

Algebra.FormallySmooth

Theorems

NameKindAssumesProvesValidatesDepends On
iff_injective_cotangentComplexBaseChange πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
Ideal.FG
RingHom.ker
RingHom.instRingHomClass
Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
IsLocalRing.maximalIdeal
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Algebra.FormallySmooth
TensorProduct
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Submodule.addCommMonoid
Algebra.toModule
Submodule.module
KaehlerDifferential
AddCommGroup.toAddCommMonoid
instAddCommGroupKaehlerDifferential
KaehlerDifferential.module'
Algebra.id
Algebra.to_smulCommClass
LinearMap
RingHom.id
TensorProduct.addCommMonoid
TensorProduct.leftModule
LinearMap.instFunLike
KaehlerDifferential.cotangentComplexBaseChange
β€”Algebra.to_smulCommClass
RingHom.instRingHomClass
Ideal.instIsTwoSided_1
IsScalarTower.of_algebraMap_eq'
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.comp_algebraMap
IsScalarTower.to₁₃₄
IsLocalRing.instIsScalarTowerResidueField
IsScalarTower.right
iff_injective_cotangentComplexBaseChange_residueField
Module.FaithfullyFlat.lTensor_injective_iff_injective
Module.FaithfullyFlat.instOfNontrivialOfFree
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.Free.of_divisionRing
IsScalarTower.to_smulCommClass
RingHomCompTriple.ids
RingHomInvPair.ids
TensorProduct.AlgebraTensorModule.curry_injective
TensorProduct.isScalarTower_left
LinearMap.ext_ring
LinearMap.ext
one_smul
Equiv.injective_comp
Equiv.comp_injective
iff_injective_cotangentComplexBaseChange_residueField πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
Ideal.FG
RingHom.ker
RingHom.instRingHomClass
Algebra.FormallySmooth
TensorProduct
IsLocalRing.ResidueField
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsLocalRing.instCommRingResidueField
Submodule.addCommMonoid
Algebra.toModule
IsLocalRing.ResidueField.algebra
Submodule.module
KaehlerDifferential
AddCommGroup.toAddCommMonoid
instAddCommGroupKaehlerDifferential
KaehlerDifferential.module'
Algebra.id
Algebra.to_smulCommClass
LinearMap
RingHom.id
TensorProduct.addCommMonoid
TensorProduct.leftModule
LinearMap.instFunLike
KaehlerDifferential.cotangentComplexBaseChange
IsLocalRing.instIsScalarTowerResidueField
IsScalarTower.right
β€”Algebra.to_smulCommClass
RingHom.instRingHomClass
Function.surjInv_eq
IsLocalRing.instIsScalarTowerResidueField
IsScalarTower.right
iff_injective_lTensor_residueField
IsScalarTower.left
RingHomCompTriple.ids
RingHomInvPair.ids
IsScalarTower.to_smulCommClass
Algebra.Extension.cotangentComplexBaseChange_eq_lTensor_cotangentComplex
Equiv.injective_comp
Equiv.comp_injective
iff_injective_lTensor_residueField πŸ“–mathematicalIdeal.FG
Algebra.Extension.Ring
CommSemiring.toSemiring
CommRing.toCommSemiring
Algebra.Extension.commRing
Algebra.Extension.ker
Algebra.FormallySmooth
TensorProduct
IsLocalRing.ResidueField
Algebra.Extension.Cotangent
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsLocalRing.instCommRingResidueField
AddCommGroup.toAddCommMonoid
Algebra.Extension.instAddCommGroupCotangent
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsLocalRing.ResidueField.field
IsLocalRing.ResidueField.algebra
Algebra.id
Algebra.Extension.instModuleCotangent
Algebra.Extension.CotangentSpace
TensorProduct.addCommMonoid
KaehlerDifferential
Algebra.Extension.instRingOfIsScalarTower
instAddCommGroupKaehlerDifferential
Algebra.Extension.algebraβ‚‚
KaehlerDifferential.module'
TensorProduct.leftModule
Semiring.toModule
Algebra.to_smulCommClass
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.lTensor
Algebra.Extension.cotangentComplex
β€”IsScalarTower.left
Algebra.to_smulCommClass
Module.Finite.of_fg
Module.Finite.of_surjective
RingHomSurjective.ids
Algebra.Extension.Cotangent.mk_surjective
Module.Finite.of_restrictScalars_finite
Algebra.Extension.instIsScalarTowerCotangent
IsScalarTower.right
RingHomCompTriple.ids
IsLocalRing.split_injective_iff_lTensor_residueField_injective
Module.Finite.base_change
Algebra.TensorProduct.instFree
Algebra.Extension.formallySmooth_iff_split_injection

---

← Back to Index